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We want to estimate certain probabilities.
LargeDeviation Theory Is a tool.

Need to be set up properly

Look at three examples

Some remarks on Large Deviations B2/









P
o P|A] ~ —ninf,cqd ()
Stimatesare local.




LDP

log P, |A] ~ —ninf,cad ()
Estimatesare local.

Upperbound is valid for compact sets

Some remarks on Large Deviations B2/



LDP

log P, |A] ~ —ninf,cad ()
Estimatesare local.

Upperbound is valid for compact sets
Lower bound is valid for open sets

Some remarks on Large Deviations B2/



LDP

log P, |A] ~ —ninf,cad ()
Estimatesare local.
IS valid for compact sets

Upper
Lower
Upper

eleluinle

DOuUNc

pound Is valid for open sets

for closed sets?

Some remarks on Large Deviations B2/



LDP

log P, |A] ~ —ninf,cad ()
Estimatesare local.

Upperbound is valid for compact sets
Lower bound is valid for open sets
Upperbound for closed sets?

X Is compact.

Some remarks on Large Deviations B2/



LDP

log P, |A] ~ —ninf,cad ()
Estimatesare local.

Upperbound

IS valid for compact sets
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LDP

log P, |A] ~ —ninf,cad ()
Estimatesare local.

Upperbound is valid for compact sets
Lower bound is valid for open sets
Upperbound for closed sets?

X Is compact.

If not, we need some estimates
Compactification or some control

Some remarks on Large Deviations B2/
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log B [exp[nF(x)] — sup,[F(z) — ()]
(y) — I(y) < F(xo) — () for yi= x



oz B [exp[nF (x)] — sup, [F(x) — 1(x)]

F(y) — I(y) < F'(xo) — I(xo) for yi= x
Z%, exp|nE(z)|d Py 0z,
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oz B [exp[nF (x)] — sup, [F(x) — 1(x)]

E(y) — I(y) < F(xo) — I(z0) for yi= z
Zin exp|nE(z)|d Py 0z,
LSC implies upper bound.
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wdog B lexp[nF (z)] — sup,[F(z) — I(2)]
E(y) — I(y) < F(xo) — I(z0) for yi= z
Zin exp|nE(z)|d Py 0z,

LSC implies upper bound.

G : X~ Yy
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wdog B lexp[nF (z)] — sup,[F(z) — I(2)]
E(y) — I(y) < F(xo) — I(z0) for yi= z
Zin exp|nE(z)|d Py 0z,

LSC implies upper bound.

G : X~ Yy

Qny= P
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m %Jog En [exp[nF(aj)] — Supx[F(x) — ](37)]

= F(y) — I(y) < F(xo) — I(zo) for yi= 2
- Z%L exp|nE(z)|d Py 0z,

» LSCimplies upper bound.

G Xy— Yy

= Qu= P!

= J(y) = infyeg-1¢y ()
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m z(t) is Gaussian process on 1) with mean 0
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= Larry Shepp
m z(t) is Gaussian process on 1) with mean 0
= p(s,t) is its covariance. Smooth.
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Larry Shepp
x(t) is Gaussian process on 1) with mean 0
p(s,t) is its covariance. Smooth.

P[(AG)] < exp[=c(G)A* + o(A%)]
C(G) lnffeg [(f

n-sg [ 5w
——// (s,t)g dsdt}b
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G = {fih supg<i< | f(1)] < 1}
G) = [2 SUPp<t<1 p(t,t)]_l



If G = {fﬁ? SUPp<t<1 |f(t)’ < 1}

c(G) = [2supg<<q p(t, ]~
Tail Is coming from the one with the largest
variance.

Some remarks on Large Deviations B/



If G = {fﬁ? SUPp<t<1 |f(t)’ < 1}

c(G) = [2supg<<q p(t, ]~
Tail Is coming from the one with the largest
variance.

Is this always true?

Some remarks on Large Deviations B/



If G = {fﬁ? SUPp<t<1 |f(t)’ < 1}

c(G) = [2 SUpg<;<1 P(1, )]~

Tail Is coming from the one with the largest
variance.

S this always true?

Doesevery almost surely bounded Gaussian process
nave a Gaussian tail?

Some remarks on Large Deviations B/



If G = {fﬁ? SUPp<t<1 |f(t)’ < 1}

c(G) = [2supy<;< p(t, ]~
Tail Is coming from the one with the largest
variance.

S this always true?

Doesevery almost surely bounded Gaussian process
nave a Gaussian tail?

Do the constants always match?

Some remarks on Large Deviations B/
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1970

= Landauand Shepp proved a Gaussian bound.
= Sankhya.
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Landau and Shepp proved a Gaussian bound.
Sankhya.
It IS enough to prove an exponential tail.

‘X1_|_X2 —l_Xn’

¢mb
< PlIXi] + -+ |Xn| 2 Cn]

< exp[—cn]

Pll|X]| = Cvn] = P > C'v/n]
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Landau and Shepp proved a Gaussian bound.
Sankhya.
It IS enough to prove an exponential tail.

\X1+X2 -+ X,

ww
< PlIXi] + -+ |Xn| 2 Cn]

< exp[—cn]

Pll|X]| = Cvn] = P > Cv/n]

Provided C > F|X]] and He’Xl] < oo
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Skhorohod published a proof of an exponential
bound in a Banach Space.
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Skhorohod published a proof of an exponential
bound in a Banach Space.

Xvy= X (1). X(t) is a continuos process with
Independent increments.
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X+Y Vi
Soare 75 and™ 75

F(t) = P[IX| > ¢
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X, Yyare two independent copies.

X+Y Vi
Soare 75 and™ 75

F(t) = P[|X]| > 1]

F(H)[1— F(s)] < [F(52)]2

Usesthis to to show the Gaussian estimate with
some constant fdf.X||. i.e logF(t) < —ct?.
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Ferniquel970
X, Yyare two independent copies.

X+Y Vi
Soare 75 and™ 75

F(t) = P[|X]| > 1]

F(H)[1— F(s)] < [F(52)]2

Usesthis to to show the Gaussian estimate with
some constant fdf.X||. i.e logF(t) < —ct?.

Improvesit to get the right constant.

Some remarks on Large Deviations B2/
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Thiswould follow from a general LDP for sums of
lID’s in Banach Space.

Thiswas done in 1977
E[e? X1 <4po for all § > 0.

Fora Gaussian this follows frofi[e?X1] < oo for
some 6 >0.
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EXample. Sourav Chatter|ee

w If = nx by Stirling’s formula

(nj = exp|—n|zlogz + (1 —x)log(l —x)] 4 o(n)]

r
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EXample. Sourav Chatter|ee

m If r¢&= nx by Stirling’s formula

(nj = exp|—n|zlogz + (1 —x)log(l —x)] 4 o(n)]

r

= Forcoin tossing with a biased coin

I(x) :xlogf—?zﬁL (1 —az)logi:iz

Some remarks on Large Deviations p2P1/



Counting the number of graphs with specified
subgraph counts.
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Counting the number of graphs with specified
subgraph counts.

Nyvertices. The number of possible subgraphs
with kwertices in a complete graph of siXeis

¢(N,T) ~ ¢(T')N™
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Counting the number of graphs with specified
subgraph counts.

Nyvertices. The number of possible subgraphs
with kwertices in a complete graph of siXeis

¢(N,T) ~ ¢(T')N™

In a given graph dhis may be smaller and the ratio
IS some fraction

r(N,G,T) <1

Some remarks on Large Deviations p2r2/



Count the number of grapldshaving Nyertices
with specified values(N, G, I';) = ryfor a finite
number ofls.
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Count the number of grapldshaving Nyertices
with specified values(N, G, I';) = ryfor a finite
number ofls.

Theirnumber Is

exp[N?J(T1,71;. .. ; Tk, i) + o(N?)]
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Count the number of grapldshaving Nyertices
with specified values(N, G, I';) = ryfor a finite
number ofls.

Thelr number Is

exp[N*J(Ty,71;...; Dk, 1) + 0o(N?))]

Out of a total ob(2) possible graphs with Nv
vertices.
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Count the

number of graplshaving Nyertices

with specified values(N, G, I';) = ryfor a finite
number ofl"s.

Thelr num

exp

Der Is

:NQJ(Fl,T‘l; R A 0(N2)]

N
2

Out of a total ob(2) possible graphs with Nv

vertices.

0 < Jy< Llog?2
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Count the

number of graplshaving Nyertices

with specified values(N, G, I';) = ryfor a finite
number ofl"s.

Thelr num

exp

Der Is

:NQJ(Fl,T‘l; R A 0(N2)]

N
2

Out of a total ob(2) possible graphs with Nv

vertices.

0 < Jy< %logQ
expression foy

Some remarks on Large Deviations
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0<z,y<1; f(z,y) = f(y,z); 0 < fy< 1



0 <z,y<1; fz,y) = fly,z); 0 < fu< 1

r(I, f) /01V<F> H fazz,x] H ATy

ieV(T
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0 <z,y<1; fz,y) = fly,z); 0 < fu< 1

r(L, f /01V<F> H fazz,x] H ATy

ieV(T

H(f) = [1flog for (1= £)log(1 = pldadys



0 <z,y<1; fz,y) = fly,z); 0 < fu< 1

r(I, f) / o, H fazz,x] H ATy

ieV(T

H(f) = [1flog for (1= £)log(1 = pldadys

Jy=sup H(f)
FariUgsdf ) 7

1<:<k Some remarks on Large Deviations  p2p4/
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Let f(x,y) be a continuous function.

Considera "random" graph with Nertices labeled
{1,2,...,N}. (i,7) is an edge with probability

).
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Let f(x,y) be a continuous function.

Considera "random" graph with Nertices labeled
{1,2,...,N}. (i,7) is an edge with probability

The "expected number" of subgraghsan be easily
calculated.

Some remarks on Large Deviations p2i5/
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Considera map ¢of I onto {1 2,..., N}.
There are YNy 1) --- (N k + 1) of them
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Considera map ¢of I onto {1 2,..., N}.

There are YNy 1) --- (N k + 1) of them

The chance that one of them maps edgeston I'
edges in our random graph is

H(U,U@EE(F)][(¢](\?;) »%Zbi\?;g)
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Ratio of the expected number of subgraphs of type I'
to the number in a complete graph, for larges Ny

T(Fa f) — / H(i,j)EE(F)f(xia xj)HieV(F)dl'iw
0,1]V(@)

Some remarks on Large Deviations p2P7/



Ratio of the expected number of subgraphs of type I'
to the number in a complete graph, for larges Ny

T(Fa f) — / H(i,j)EE(F)f(xia xj)HieV(F)dl'iw
0,1]V(@)

Law of large numbers is valid.
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Ratio of the expected number of subgraphs of type I'
to the number in a complete graph, for larges Ny

T(Fa f) — / H(i,j)EE(F)f(xia xj)HieV(F)dl'z‘w
0,1]V(D)

Law of large numbers is valid.

IU(Q) — H(Z] A Z 7 ]%ZSH (¢,5)¢6(G) [+ — (% %@

Some remarks on Large Deviations p2P7/






The typical probabilityw(G) under the distribution
determined by fas the propertiog w(G) =

> ogf(ged > losll - fk)

(2.7)€€(9) (,)¢E(9)
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The typical probabilityw(G) under the distribution
determined by fas the propertiog w(G) =

> ogf(ged > losll - fk)

(2.7)€€(9) (,)¢E(9)

Some remarks on Large Deviations p2r9/



The typical probabilityw(G) under the distribution
determined by fas the propertiog w(G) =

> log f( ,ﬂﬁ > logl—f(%,%%

(4,)€€(9) (1,5)£E(9)

You must have at least ex%%[{(f)] graphs.

Some remarks on Large Deviations p?r9/






| L1,1 41,2 L1 nap |
| 121 422 L2 na |
| |
| T Tn,2 T |
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= {ky k(z,y),[0,1]* — [0,1]}
Jqange of Nyx Nymatrices.



K = {ki k(z,y). [0, 1) — [0,1]}
Kngange ofNyx Nymatrices.

P(ky) = exp[—4-log 2]
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K = {ki k(z,y). [0, 1) — [0,1]}
Kngange ofNyx Nymatrices.

P(ky) = exp[—% log 2]

10g P[/ﬁ\@ﬁ f]
~ — I(f)
N2

=, /flog(zf) + (1 = f)log(2(1 — f))dxzdyy

= N[H(f) — 3 log?)
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r(I', ) is not continuous.
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Topology?Weak ?
kv~ r(I', f) is not continuous.

If LDP holds in a topology in which it is continuous,
then

|

J(Ti,r; .. Tk, mg)) = 5 —log 2 — k;r<1in£> (k)
1<dick
= sup H(k)
k:ir(;, k) r;

1<i<k
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Topology?Weak ?
kv~ r(I', f) is not continuous.

If LDP holds in a topology in which it is continuous,
then

|

J(Ti,r; .. Tk, mg)) = 5 5log2— T(gng) I(k)
1<dick
= sup H(k)
k:ir(;, k) r;

1<i<k

Strongtopology likeL, will be OK.
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Topology?Weak ?

kv~ r(I', f) is not continuous.

If LDP holds in a topology in which it is continuous,
then

|

J(Ti,r; .. Tk, mg)) = 5 5log2— T(gng) I(k)
1<dick
= sup H(k)
k:ir(;, k) r;

1<i<k

Strongtopology likeL, will be OK.
No chance. Fluctuations.

Some remarks on Large Deviations p223/
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Enter"cut" topology
cut metric isdo(kq, ko) =

sup / (@, y) — kol )] o(x) (y)dedyy

6], <1
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Enter"cut" topology
cut metric isdo(kq, ko) =

sup / (@, y) — kol 9)|o(z) (y)dedyy

6], <1

SupJ [kl (I’, y) i /{2(1’, y)]d$d9¢

A,BYJ Ax B
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do(kn, k) — 0 and sup, . ,fkn(z,y)| < C



do(kn, k) — 0 and sup, . ,fkn(z,y)| < C
I k,) — ([ k).



If do(k,, k) — 0and sup, , ,4kn(2,9)| < C
r([, k,) — (T, k).
Limits of large graphs.
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If do(k,, k) — 0and sup, , ,4kn(2,9)| < C

r([, k,) — r(T, k).

Limits of large graphs.

Countthe number of occurrencesloin the graph.
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If do(k,, k) — 0and sup, , ,4kn(2,9)| < C
r([, k,) — (T, k).
Limits of large graphs.

Count the number of occurrenced ah the graph.
Divide by the number in a complete graph.

Some remarks on Large Deviations p?25/
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Assumethe limit (I") of the ratio exists for evelily.
What are possible limits? Graphons.
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What are possible limits? Graphons.
Representation.

There is s symmetric function(sf, ) on
0, 1] x [0, 1] such that
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Assumethe limit (I") of the ratio exists for evelily.
What are possible limits? Graphons.
Representation.

There is s symmetric function(sf, ) on
0, 1] x [0, 1] such that

Forany graphi” with vertices)(I') and edgeg (I")

r(I', f) = / I yeem) f (@i, ) icpr)dey
0,1]V(0)

Some remarks on Large Deviations p226/



r([', f) = r(L, g) for all T" if and only if
(x,y) = g(ox, oy) for some o@ H.1

—
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r([', f) = r(L, g) for all T" if and only if
f(x,y) = g(ox,oy) for some o@& H.y

Cut topology is the smallest topology o that
makesfy— r(I', f) continuous for every I
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r([', f) = r(L, g) for all T" if and only if
f(x,y) = g(ox,oy) for some o@& H.y

Cut topology is the smallest topology o that
makesfy— r(I', f) continuous for every I

This topology works for LLN 2" 2"« <"

Some remarks on Large Deviations p227/



Upper Bound needs compactness, or exponential
tightness.
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UpperBound needs compactness, or exponential
tightness.

JC IS not compact under cut topology.
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UpperBound needs compactness, or exponential
tightness.

JC IS not compact under cut topology.
But /C/H is by a theorem of Lovasz-Szegedy
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UpperBound needs compactness, or exponential
tightness.

JC IS not compact under cut topology.
But /C/H is by a theorem of Lovasz-Szegedy

It may be possible to prove the large deviation
estimate In the topology induced by "cut" topology

on IC/H

Some remarks on Large Deviations p228/



Need to estimate the probability of a neighborhood
of the orbit.
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Need to estimate the probability of a neighborhood
of the orbit.

Szemeredi'segularity lemma
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Need to estimate the probability of a neighborhood
of the orbit.

Szemeredi'segularity lemma
Replaceshe #Horbit by a 7, permutation orbit.
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Need to estimate the probability of a neighborhood
of the orbit.

Szemeredi'segularity lemma
Replaceshe #Horbit by a 7, permutation orbit.

log n! = o(n?)

Some remarks on Large Deviations p229/
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Example. Chiranjib Mukherjee

= BrownianMotion
T
= L= 7Jy Ou(sdst

A(V) = lim ;Zl'ogE[eXp[/O V(xz(s))ds]|

T—00

— up [ [v@ls@pde -3 [ 1P

| fl2=1
— { / V() f(z)dz — % / ij ‘de}p

f=0
1fl1 1
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If we only need to estimate

E%@Xp[ / v <s>>ds1}

One point comactification 0 “is enough.
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If we only need to estimate

E%@Xp[ / v <s>>ds1}

One point comactification 0 “is enough.

{fe fu= 0, | f(z)dwy< 1},
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If we only need to estimate

E%@Xp[ / v <s>>ds1}

One point comactification 0 “is enough.

{fi fi> 0, | f(z)dzys 1},
Vague topology is OK.

Some remarks on Large Deviations p?233/
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anslation invariant comapactification?

}



Translation invariant comapactification?
e}
S (R <1, duyp= fidai)
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Translation invariant comapactification?
e}

> wdRY) <1, dpp= fuday

I({fo}) = Yub [ V1P da= Y0 I(f0)
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Translation invariant comapactification?
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I({f}) = X | Nfebdae= 32 1(f0)

= sup {Z/ )(fio F) () — 3 f@b}

{fa}



Translation invariant comapactification?
U}

> iR < 1, dup= fudaip
I({f}) = i S VT daw= 32 1(f0)

= sup {Z/ )(fio ) () — 3 fw}

{fa}

et sup [ Viess D - 1)
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NeedsCompactness
D(/jlv /72)
kj kj
Z 2%’ f Fj(xlv SO 7xkj)[Hrzllul(d'rr)_Hr:LLLQ(d'I”M

Some remarks on Large Deviations p?235/



NeedsCompactness
D (/71 ; /72)

kj k;j
Z 2%’ f Fj(xlv SO 7xkj)[Hrzllul(d'rr)_Hr:LLLQ(d'I”M
{F;} are translation invariant
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NeedsCompactness

D (f11, f12)
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> | | F(zq,. .. zp)Hu(d,)

f F(xla 0o 7xk)HM77deT)
Fy= exp[y/—1>_ t;x;] providedd ", t;= 0
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()
) = 6(t) ()
(1) = 1if 3= 0



()]°
t) = |p(t)|x(t)

X (i) = 1if D k=0

t+ s) = x(t)x(s), x(nt) = [x(®)]"™






= [o()[°
mo(t) = |o(t)x ()
= x(t+s) = x(t)x(s), x(nt) = [x(®)]"

= x(1) = et

® a IS not determined.
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