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LDP 

log Pn[A] ≃ −n infx∈A I(x) 
Estimates are local. 

Upper bound is valid for compact sets 

Lower bound is valid for open sets 

Upper bound for closed sets? 

X is compact. 

If not, we need some estimates 

Compactification or some control 
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1 log EPn [exp[nF (x)] → sup [F (x) − I(x)] xn 

F (y) − I(y) < F (x0) − I(x0) for y = x0 
1 
Zn 

exp[nF (x)]dPn → �x0 

LSC implies upper bound. 

G : X → Y 

G−1Qn = Pn 

J(y) = infx∈G−1(y) I(x) 

Some remarks on Large Deviations p.4/?? 
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1967 

Larry Shepp 

x(t) is Gaussian process on [0, 1] with mean 0. 

ˆ(s, t) is its covariance. Smooth. 

P [(�G)c] ≤ exp[−c(G)�2 + o(�2)] 

c(G) = inff∈Gc I(f) 

� Z 1 
I(f) = sup f(t)g(t)dt 

g 0 Z 1 Z 1 � 
1 − ˆ(s, t)g(s)g(t)dsdt 
2 0 0 
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If G = {f : sup0≤t≤1 |f(t)| ≤ 1} 

c(G) = [2 sup0≤t≤1 ˆ(t, t)]
−1 

Tail is coming from the one with the largest 
variance. 

Is this always true? 

Does every almost surely bounded Gaussian process 
have a Gaussian tail? 

Do the constants always match? 

Some remarks on Large Deviations p.6/?? 
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1970 

Landau and Shepp proved a Gaussian bound. 

Sankhya. 

It is enough to prove an exponential tail. 

√ |X1 + X2 + · · · + Xn| √ 
P [||X|| ≥ C n] = P [ √ ≥ C n] 

n 

≤ P [|X1| + · · · |Xn| ≥ Cn] 

≤ exp[−cn] 

Provided C > E[|X]] and E[e�|X |] <∞ 
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Skhorohod published a proof of an exponential 
bound in a Banach Space. 

X = X(1). X(t) is a continuos process with 
independent increments. 

P [|X(1)| ≥ n] ≤ P [ sup |X(t)| ≥ n] 
0≤t≤1 

≤ P [˝1 + ˝2 + . . . + ˝n ≤ 1] 
−(˝1+···+˝n≤ e[E[e )]] 

= e[E[e −˝ ]n] 
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Fernique 1970 

X,Y are two independent copies. 
X√+YSo are and X√−Y 

2 2 

F (t) = P [|X| ≥ t] 

F (t)[1 − F (s)] ≤ [F ( t√−s)]2 
2 

Uses this to to show the Gaussian estimate with 
some constant for kXk. i.e log F (t) ≤ −ct2 . 
Improves it to get the right constant. 
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This would follow from a general LDP for sums of 
IID’s in Banach Space. 

This was done in 1977 

E[e�|X |] < ∞ for all � > 0. 

For a Gaussian this follows from E[e�|X |] <∞ for 
some � >0. 

Some remarks on Large Deviations p.10/?? 
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If r = nx by Stirling’s formula 
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Example. Sourav Chatterjee 

If r = nx by Stirling’s formula 
� � 
n 

= exp[−n[x log x+ (1 − x) log(1 − x)]+ o(n)] 
r 

For coin tossing with a biased coin 

x 1 − x 
I(x) = x log + (1 − x) log 

p 1 − p 

Some remarks on Large Deviations p.11/?? 
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Counting the number of graphs with specified 
subgraph counts. 

N vertices. The number of possible subgraphs � 
with k vertices in a complete graph of size N is 

c(N,�) ≃ c(�)Nk . 

In a given graph G this may be smaller and the ratio 
is some fraction 

r(N,G,�) ≤ 1 
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Count the number of graphs G having N vertices 
with specified values r(N,G,�i) = ri for a finite 
number of �’s. 

Their number is 

exp[N2J(�1, r1; . . . ; �k, rk) + o(N2)] 

2Out of a total of 2(
N) possible graphs with N 

vertices. 

0 ≤ J ≤ 1 log 2 2 

expression for J 
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Z Y Y 
r(�, f) = f(xi, xj) dxi 

[0,1]V(�) 
(i,j)∈E(�) i∈V(�) 

Z 
1 

H(f) = − [f log f + (1 − f) log(1 − f)]dxdy 
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0 ≤ x, y ≤ 1; f(x, y) = f(y, x); 0 ≤ f ≤ 1 

Z Y Y 
r(�, f) = f(xi, xj) dxi 

[0,1]V(�) 
(i,j)∈E(�) i∈V(�) 

Z 
1 

H(f) = − [f log f + (1 − f) log(1 − f)]dxdy 
2 

J = sup H(f) 
f :r(�i,f ) ri 

1≤i≤k Some remarks on Large Deviations p.14/?? 
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Let f(x, y) be a continuous function. 

Consider a "random" graph with N vertices labeled 
{1, 2, . . . , N}. (i, j) is an edge with probability 
f( i j , ).N N 

The "expected number" of subgraphs � can be easily 
calculated. 
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Consider a map °of � onto {1, 2, . . . , N}. 

There are N(N − 1) · · · (N − k + 1) of them 

The chance that one of them maps edges in � to 
edges in our random graph is 

°(v) °(v ′ )
�(v,v ′)∈E(�)f( , )

N N 
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Ratio of the expected number of subgraphs of type � 
to the number in a complete graph, for large N is 

Z 
r(�, f) = �(i,j)∈E(�)f(xi, xj)�i∈V(�)dxi 

[0,1]V(�) 

Law of large numbers is valid. 

i j i j 
w(G) = �(i,j)∈E(G)f( , )�(i,j)/ , )] ∈E(G)[1−f(

N N N N 
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X 
w(G) ≃ 1 

G∈GN,ǫ,r1,r2,...,rk 
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The typical probability w(G) under the distribution 
determined by f has the property log w(G) = 

X Xi j i j
log f( , ) + log[1 − f( , )] 

N N N N 
(i,j)∈E(G) (i,j)/∈E(G) 

− N
2 

H(f)2 

You must have at least exp[N
2 

H(f)] graphs. 2 
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K = {k : k(x, y), [0, 1]2 → [0, 1]} 

KN range of N × N matrices. 

P (kN) = exp[−N2 

log 2] 2 

log P [kN ≃ f ] 

≃− I(f) 
Z 

N2 

= f log(2f) + (1 − f) log(2(1 − f))dxdy 
2 

= N 2[H(f) − 
1 
log 2] 

2 
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–

Topology? Weak ? 

k → r(�, f) is not continuous. 

If LDP holds in a topology in which it is continuous, 
then 

1 
J(�1, r1; . . . ; �k, rk)) = 

2 
log 2 − inf 

k :r(�i , k) ri 

I(k) 
1≤i≤k 

= sup H(k) 
k :r(�i , k) ri 

1≤i≤k 

Strong topology like Lp will be OK. 

No chance. Fluctuations. 
Some remarks on Large Deviations p.23/?? 
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Enter "cut" topology 

cut metric is d�(k1, k2) = 
Z 

sup [k1(x, y) − k2(x, y)]°(x) (y)dxdy 
|°|,| |≤1 
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Enter "cut" topology 

cut metric is d�(k1, k2) = 
Z 

sup [k1(x, y) − k2(x, y)]°(x) (y)dxdy 
|°|,| |≤1 

Z 
sup [k1(x, y) − k2(x, y)]dxdy 
A,B A×B 

Some remarks on Large Deviations p.24/?? 
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r(�, kn) → r(�, k). 

Limits of large graphs. 

Count the number of occurrences of � in the graph. 

Some remarks on Large Deviations p.25/?? 



–

If d�(kn, k) → 0 and sup |kn(x, y)| ≤ Cn,x,y 

r(�, kn) → r(�, k). 

Limits of large graphs. 

Count the number of occurrences of � in the graph. 

Divide by the number in a complete graph. 
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Assume the limit (�) of the ratio exists for every �. 

What are possible limits? Graphons. 

Representation. 

There is s symmetric function f(x, y) on 
[0, 1] × [0, 1] such that 

For any graph � with vertices V(�) and edges E(�) 
Z 

r(�, f) = �(i,j)∈E(�)f(xi, xj)�i∈V(�)dxi 
[0,1]V(�) 

Some remarks on Large Deviations p.26/?? 
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r(�, f) = r(�, g) for all � if and only if 
f(x, y) = g(˙x, ˙y) for some ˙ ∈ H. 
Cut topology is the smallest topology on K/H that 
makes f → r(�, f) continuous for every �. 

This topology works for LLN. 2n × 2n << 2n
2 

Some remarks on Large Deviations p.27/?? 
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–

Upper Bound needs compactness, or exponential 
tightness. 

K is not compact under cut topology. 

But K/H is by a theorem of Lovász-Szegedy 

It may be possible to prove the large deviation 
estimate in the topology induced by "cut" topology 
on K/H 

Some remarks on Large Deviations p.28/?? 
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Need to estimate the probability of a neighborhood 
of the orbit. 

Szemerédi’s regularity lemma 

Replaces the H orbit by a ň permutation orbit. 

log n! = o(n2) 

Some remarks on Large Deviations p.29/?? 
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Example. Chiranjib Mukherjee 

Brownian Motion 
R T1Lt = �x(s)ds T 0 

Z T1 
�(V ) = lim log E[exp[ V (x(s))ds]] 

T→∞ T � Z 0 Z 
1 

= sup V (x)[f(x)]2dx− |∇f |2dx 
2|f |2=1 

� Z Z � 
1 |∇f |2 

= sup V (x)f(x)dx− dx 
8 ff ≥0 

|f |1 1 
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P [LT ≃ f ] = exp[−TI(f) + o(T )] 

Z 
1 |∇f |2 

I(f) = dx 
8 f 
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E exp[ V ( (s) − (t))dsdt]
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–

� Z T Z T � 
1 

E exp[ V ( (s) − (t))dsdt]
T 0 0 

V (x) → 0 as |x| → ∞ 

exp[cT + o(T )] ?. 

� Z Z � 
1 |∇f |2 

c = sup V (x−y)f(x)f(y)dxdy− dx 
8 ff ≥0 

|f |1 1 
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–

� Z T Z T � 
1 

E exp[ V ( (s) − (t))dsdt]
T 0 0 

V (x) → 0 as |x| → ∞ 

exp[cT + o(T )] ?. 

� Z Z � 
1 |∇f |2 

c = sup V (x−y)f(x)f(y)dxdy− dx 
8 ff ≥0 

|f |1 1 

Compactification of M(Rd)/Rd 
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–

If we only need to estimate 
� Z T � 

E exp[ V ( (s))ds] 
0 

One point comactification of Rd is enough. 
R 

{f : f ≥ 0, f(x)dx ≤ 1}. 

Vague topology is OK. 

Some remarks on Large Deviations p.33/?? 
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Translation invariant comapactification? 

{µ̃ }
P 

µ (Rd) ≤ 1, dµ = f dx 
P R P

1 |∇fα|2 I({f }) = dx = I(f )i 8 fα 

�XZ X � 
¯ c = sup V (x)(f ∗ f )(x)dx− I(f ) 

{fα} 
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Translation invariant comapactification? 

{µ̃ }
P 

µ (Rd) ≤ 1, dµ = f dx 
P R P

1 |∇fα|2 I({f }) = dx = I(f )i 8 fα 

�XZ �X 
¯ c = sup V (x)(f ∗ f )(x)dx− I(f ) 

{fα} 

� Z � 
¯ c = sup V (x)(f ∗ f)(x)dx− I(f) 

f 
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Needs Compactness 

D(µe1, µe2) 
P R 

1 kj kj| Fj(x1, . . . , xkj )[�r=1µ1(dxr)−�r=1µ2(dxr)|2j 

{Fj} are translation invariant 

F (x1 + x, . . . , xk + x) = F (x1, . . . , xk) 

Complete with this metric. 

Completion is compact. 

Some remarks on Large Deviations p.35/?? 
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–

What is in the completion? 

{µe } 

ZX 1 
D({µe }, {µe }) = | Fj(x1, . . . , xkj )2j X X 

[ �µ (dxr) − �µ (dxr)| 

Need to show that if D({µe }, {µe }) = 0 then 

{µe } = {µe } 

Some remarks on Large Deviations p.36/?? 
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F (x1, . . . , xk)�µ (dxr) 
� �mP R 

F (x1, . . . , xk)�µ (dxr) 

R 
F (x1, . . . , xk)�µ (dxr) 

√ P P 
F = exp[ −1 tixi] provided ti = 0iP 
�°(ti) provided ti = 0i 
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|°(t)|2 

°(t) = |°(t)|˜(t)
P 

�i˜(ti) = 1 if ti = 0i 

˜(t+ s) = ˜(t)˜(s), ̃ (nt) = [˜(t)]n 

ita ˜(t) = e 

a is not determined. 

Some remarks on Large Deviations p.38/?? 
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THANK YOU 

Some remarks on Large Deviations p.39/?? 
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