Some remarks on Large Deviations

S.R.S. Varadhan Courant Institute, NYU

Conference in memory of Larry Shepp April 25, 2014

Some remarks on Large Deviations p.1/??

■ We want to estimate certain probabilities.

We want to estimate certain probabilities.Large Deviation Theory is a tool.

We want to estimate certain probabilities. Large Deviation Theory is a tool. Need to be set up properly

We want to estimate certain probabilities.
Large Deviation Theory is a tool.
Need to be set up properly
Look at three examples

LDP $\log P_n[A] \simeq -n \inf_{x \in A} \mathcal{J}(x)$

LDP log $P_n[A] \simeq -n \inf_{x \in A} \mathcal{J}(x)$ Estimates are local.

- $\log P_n[A] \simeq -n \inf_{x \in A} \Psi(x)$
- **E**stimates are local.
- Upper bound is valid for compact sets

- $\Box \log P_n[A] \simeq -n \inf_{x \in A} \mathcal{J}(x)$
- **E**stimates are local.
- Upper bound is valid for compact sets
- Lower bound is valid for open sets

- $\Box \log P_n[A] \simeq -n \inf_{x \in A} \mathcal{J}(x)$
- **E**stimates are local.
- Upper bound is valid for compact sets
- Lower bound is valid for open sets
- Upper bound for closed sets?

- $\Box \log P_n[A] \simeq -n \inf_{x \in A} \mathcal{I}(x)$
- **E**stimates are local.
- Upper bound is valid for compact sets
- Lower bound is valid for open sets
- Upper bound for closed sets?
- \mathbf{Z} is compact.

- $\log P_n[A] \simeq -n \inf_{x \in A} \mathcal{I}(x)$
- **E**stimates are local.
- Upper bound is valid for compact sets
- Lower bound is valid for open sets
- Upper bound for closed sets?
- \mathbf{Z} is compact.
- If not, we need some estimates

- $\log P_n[A] \simeq -n \inf_{x \in A} \mathcal{I}(x)$
- **Estimates are local.**
- Upper bound is valid for compact sets
- Lower bound is valid for open sets
- Upper bound for closed sets?
- \mathbf{Z} is compact.
- If not, we need some estimates
- Compactification or some control

$= \frac{1}{n\psi} \log E^{P_n} [\exp[nF(x)] \to \sup_x [F(x) - I(x)]$

$$\frac{1}{n\psi} \log E^{P_n} [\exp[nF(x)] \to \sup_x [F(x) - I(x)]]$$
$$= F(y) - I(y) < F(x_0) - I(x_0) \text{ for } y \not\models x_0$$

$$\frac{1}{n\psi} \log E^{P_n} [\exp[nF(x)] \to \sup_x [F(x) - I(x)]]$$

$$F(y) - I(y) < F(x_0) - I(x_0) \text{ for } y \not = x_0$$

$$\frac{1}{Z_n} \exp[nF(x)] dP_{n\psi} \to \delta_{x_0}$$

$$\frac{1}{n\psi} \log E^{P_n} [\exp[nF(x)] \to \sup_x [F(x) - I(x)]]$$

$$F(y) - I(y) < F(x_0) - I(x_0) \text{ for } y \not\models x_0$$

$$\frac{1}{Z_n} \exp[nF(x)] dP_{n\psi} \to \delta_{x_0}$$

$$\text{LSC implies upper bound.}$$

$\frac{1}{n\psi} \log E^{P_n} [\exp[nF(x)] \to \sup_x [F(x) - I(x)]]$ $F(y) - I(y) < F(x_0) - I(x_0) \text{ for } y \not = x_0$ $\frac{1}{Z_n} \exp[nF(x)] dP_{n\psi} \to \delta_{x_0}$ LSC implies upper bound. $G: X \psi \to Y \psi$

 $\frac{1}{n\psi} \log E^{P_n} [\exp[nF(x)] \to \sup_x [F(x) - I(x)]]$ $F(y) - I(y) < F(x_0) - I(x_0) \text{ for } y \not= x_0$ $\frac{1}{Z_n} \exp[nF(x)] dP_n \not\to \delta_{x_0}$ LSC implies upper bound. $G : X \not\to Y \psi$ $Q_n \not= P_n \mathcal{G}^{-1}$

 $= \frac{1}{nw} \log E^{P_n} [\exp[nF(x)] \to \sup_x [F(x) - I(x)]]$ $F(y) - I(y) < F(x_0) - I(x_0)$ for $y \not = x_0$ $\frac{1}{Z} \exp[nF(x)] dP_{n\psi} \rightarrow \delta_{x_0}$ **LSC** implies upper bound. $\blacksquare G : X \psi \rightarrow Y \psi$ $\square Q_{nv} = P_n G^{-1}$ $\blacksquare J(y) = \inf_{x \in G^{-1}(y)} I(x)$

Larry Shepp

Larry Shepp x(t) is Gaussian process on [0, 1] with mean 0.

1967

Larry Shepp x(t) is Gaussian process on [0, 1] with mean 0. ρ(s,t) is its covariance. Smooth.

1967

Larry Shepp
x(t) is Gaussian process on [0, 1] with mean 0.
ρ(s,t) is its covariance. Smooth.
P[(λG)^c] ≤ exp[-c(G)λ² + o(λ²)]

1967

Larry Shepp
x(t) is Gaussian process on [0, 1] with mean 0.
ρ(s,t) is its covariance. Smooth.
P[(λG)^c] ≤ exp[-c(G)λ² + o(λ²)]
c(G) = inf_{f∈G^c} I(f)

$$\begin{split} I(f) &= \sup_{g\psi} \left[\int_0^1 f(t)g(t)dt\psi \\ &- \frac{1}{2} \int_0^1 \int_0^1 \rho(s,t)g(s)g(t)dsdt\psi \right] \end{split}$$

If $G = \{ f \psi \sup_{0 \le t \le 1} |f(t)| \le 1 \}$ $c(G) = [2 \sup_{0 \le t \le 1} \rho(t, t)]^{-1}$

If $G = \{ f \psi \sup_{0 \le t \le 1} |f(t)| \le 1 \}$ $c(G) = [2 \sup_{0 \le t \le 1} \rho(t, t)]^{-1}$

Tail is coming from the one with the largest variance.

$$c(G) = [2 \sup_{0 \le t \le 1} \rho(t, t)]^{-1}$$

Tail is coming from the one with the largest variance.

Is this always true?

$$c(G) = [2 \sup_{0 \le t \le 1} \rho(t, t)]^{-1}$$

- Tail is coming from the one with the largest variance.
- **Is** this always true?
- Does every almost surely bounded Gaussian process have a Gaussian tail?

$$c(G) = [2 \sup_{0 \le t \le 1} \rho(t, t)]^{-1}$$

- Tail is coming from the one with the largest variance.
- **Is** this always true?
- Does every almost surely bounded Gaussian process have a Gaussian tail?
- Do the constants always match?

Landau and Shepp proved a Gaussian bound.

Landau and Shepp proved a Gaussian bound.Sankhya.

Landau and Shepp proved a Gaussian bound.Sankhya.

It is enough to prove an exponential tail.

Landau and Shepp proved a Gaussian bound. Sankhya.

It is enough to prove an exponential tail.

$$P[||X|| \ge C\sqrt{n}] = P[\frac{|X_1 + X_2 + \dots + X_n|}{\sqrt{n\psi}} \ge C\sqrt{n}]$$
$$\le P[|X_1| + \dots + |X_n| \ge Cn]$$
$$\le \exp[-cn]$$

Landau and Shepp proved a Gaussian bound. Sankhya.

It is enough to prove an exponential tail.

$$P[||X|| \ge C\sqrt{n}] = P[\frac{|X_1 + X_2 + \dots + X_n|}{\sqrt{n\psi}} \ge C\sqrt{n}]$$
$$\le P[|X_1| + \dots + |X_n| \ge Cn]$$
$$\le \exp[-cn]$$

Provided C > E[|X]] and $E[e^{\theta|X|}] < \infty$

Skhorohod published a proof of an exponential bound in a Banach Space.

Skhorohod published a proof of an exponential bound in a Banach Space.

• $X \not= X(1)$. X(t) is a continuos process with independent increments.

Skhorohod published a proof of an exponential bound in a Banach Space.

 $X \not= X(1)$. X(t) is a continuos process with independent increments.

 $P[|X(1)| \ge n] \le P[\sup_{0 \le t \le 1} |X(t)| \ge n]$ $\le P[\tau_1 + \tau_2 + \ldots + \tau_n \not \le 1]$ $\le e[E[e\overline{\psi}^{(\tau_1 + \cdots + \tau_n)}]]$ $= e[E[e\overline{\psi}^{\tau}]^n]$

Fernique 1970

Fernique 1970 X, Y\u03c6are two independent copies.

Fernique 1970 X, Y√are two independent copies. So are ^{X+Y}/_{√2} and ^{X-Yψ}/_{√2}

Fernique 1970 X, Y ∉ two independent copies. So are ^{X+Y} _{√2} and ^{X-Y ∉} _{√2} F(t) = P[|X| ≥ t]

Fernique 1970 X, Y\u03c6 are two independent copies. So are \$\frac{X+Y}{\sqrt{2}}\$ and \$\frac{X-Y\u03c6}{\sqrt{2}}\$ F(t) = P[|X| \ge t] F(t)[1 - F(s)] \le [F(\frac{t-s}{\sqrt{2}})]^2

Fernique 1970 X, Y\u03c6 are two independent copies. So are $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y\psi}{\sqrt{2}}$ $F(t) = P[|X| \ge t]$ $F(t)[1 - F(s)] \le [F(\frac{t-s}{\sqrt{2}})]^2$

Uses this to to show the Gaussian estimate with some constant for ||X||. i.e $\log F(t) \leq -ct^2$.

Fernique 1970 $X, Y\psi$ are two independent copies. So are $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y\psi}{\sqrt{2}}$ $F(t) = P[|X| \ge t]$ $F(t)[1 - F(s)] \le [F(\frac{t-s}{\sqrt{2}})]^2$ Uses this to to show the Gaussian

Uses this to to show the Gaussian estimate with some constant for ||X||. i.e $\log F(t) \leq -ct^2$.

Improves it to get the right constant.

This was done in 1977

This was done in 1977

 $= E[e^{\theta|X|}] < \psi \infty \text{ for all } \theta > 0.$

- This was done in 1977
- $\blacksquare E[e^{\theta|X|}] < \psi \infty \text{ for all } \theta > 0.$
- For a Gaussian this follows from $E[e^{\theta|X|}] < \infty$ for some $\theta > 0$.

Example. Sourav Chatterjee

If $r \not= nx$ by Stirling's formula

$$\begin{pmatrix} n \\ r \\ r \end{pmatrix} = \exp[-n[x \log x + (1-x) \log(1-x)] + o(n)]$$

If $r \not= nx$ by Stirling's formula

$$\begin{pmatrix} n \\ r \\ r \end{pmatrix} = \exp[-n[x \log x + (1-x) \log(1-x)] + o(n)]$$

For coin tossing with a biased coin

$$I(x) = x \log \frac{x\psi}{p\psi} (1-x) \log \frac{1-x\psi}{1-p\psi}$$

Counting the number of graphs with specified subgraph counts.

Counting the number of graphs with specified subgraph counts.

N/wertices. The number of possible subgraphs Γ with k/wertices in a complete graph of size N/ψ s

 $c(N,\Gamma) \simeq c(\Gamma) N^{k\psi} \psi$

Counting the number of graphs with specified subgraph counts.

N/ ψ vertices. The number of possible subgraphs Γ with $k\psi$ vertices in a complete graph of size $N\psi$ s

 $c(N,\Gamma) \simeq c(\Gamma) N^{k\psi} \psi$

In a given graph \mathcal{G} this may be smaller and the ratio is some fraction

 $r(N,\mathcal{G},\Gamma) \le 1$

Their number is

 $\exp[N^2 J(\Gamma_1, r_1; \ldots; \Gamma_k, r_k) + o(N^2)]$

Their number is

 $\exp[N^2 J(\Gamma_1, r_1; \ldots; \Gamma_k, r_k) + o(N^2)]$

Out of a total of $2^{\binom{N}{2}}$ possible graphs with $N\psi$ vertices.

Their number is

 $\exp[N^2 J(\Gamma_1, r_1; \ldots; \Gamma_k, r_k) + o(N^2)]$

Out of a total of $2^{\binom{N}{2}}$ possible graphs with $N\psi$ vertices.

 $= 0 \le J \psi \le \frac{1}{2} \log 2$

Their number is

 $\exp[N^2 J(\Gamma_1, r_1; \ldots; \Gamma_k, r_k) + o(N^2)]$

Out of a total of $2^{\binom{N}{2}}$ possible graphs with $N\psi$ vertices.

 $0 \le J\psi \le \frac{1}{2}\log 2$ expression for $J\psi$

$$r(\Gamma, f) = \int_{[0,1]^{\mathcal{V}(\Gamma)}} \prod_{(i,j)\in\mathcal{E}(\Gamma)} f(x_i, x_j) \prod_{i\in\mathcal{V}(\Gamma)} dx_{i\psi}$$

$$r(\Gamma, f) = \int_{[0,1]^{\mathcal{V}(\Gamma)}} \prod_{(i,j)\in\mathcal{E}(\Gamma)} f(x_i, x_j) \prod_{i\in\mathcal{V}(\Gamma)} dx_{i\psi}$$

 $H(f) = -\frac{1}{2} \int [f \log f \psi + (1-f) \log(1-f)] dx dy \psi$

$$r(\Gamma, f) = \int_{[0,1]^{\mathcal{V}(\Gamma)}} \prod_{(i,j)\in\mathcal{E}(\Gamma)} f(x_i, x_j) \prod_{i\in\mathcal{V}(\Gamma)} dx_{i\psi}$$

$$H(f) = -\frac{1}{2} \int [f \log f \psi + (1 - f) \log(1 - f)] dx dy \psi$$

$$J \not = \sup_{\substack{f: r(\Gamma_i, f) \\ 1 \le i \le k}} H(f)$$

Let f(x, y) be a continuous function.

Let f(x, y) be a continuous function. Consider a "random" graph with N\u03c6vertices labeled {1, 2, ..., N}. (i, j) is an edge with probability f(\u03c6 \u03c6 \u03c6, \u03c6 \u03c6 \u03c6).

Let f(x, y) be a continuous function.

- Consider a "random" graph with $N\psi$ vertices labeled $\{1, 2, \ldots, N\}$. (i, j) is an edge with probability $f(\frac{i}{N}, \psi_{N\psi}^{j\psi})$.
- The "expected number" of subgraphs Γ can be easily calculated.

Consider a map ϕ of Γ onto $\{1, 2, \ldots, N\}$.

Consider a map ϕ of Γ onto $\{1, 2, \dots, N\}$. There are $N(N\psi 1) \cdots (N\psi k + 1)$ of them

Consider a map φ of Γ onto {1, 2, ..., N}.
There are N(Nψ-1) ··· (Nψ-k+1) of them
The chance that one of them maps edges in Γ to edges in our random graph is

$$\Pi_{(v,v\psi)\in E(\Gamma)}f(\overset{\phi(v)}{N}, \overset{\phi(v\psi)}{\psi}_{N\psi})$$

Ratio of the expected number of subgraphs of type Γ to the number in a complete graph, for large $N\psi$ s

$$r(\Gamma, f) = \int_{[0,1]^{\mathcal{V}(\Gamma)}} \Pi_{(i,j)\in\mathcal{E}(\Gamma)} f(x_i, x_j) \Pi_{i\in\mathcal{V}(\Gamma)} dx_{i\psi}$$

Ratio of the expected number of subgraphs of type Γ to the number in a complete graph, for large $N\psi$ s

$$r(\Gamma, f) = \int_{[0,1]^{\mathcal{V}(\Gamma)}} \Pi_{(i,j)\in\mathcal{E}(\Gamma)} f(x_i, x_j) \Pi_{i\in\mathcal{V}(\Gamma)} dx_{i\psi}$$

Law of large numbers is valid.

Ratio of the expected number of subgraphs of type Γ to the number in a complete graph, for large $N\psi$ s

$$r(\Gamma, f) = \int_{[0,1]^{\mathcal{V}(\Gamma)}} \Pi_{(i,j)\in\mathcal{E}(\Gamma)} f(x_i, x_j) \Pi_{i\in\mathcal{V}(\Gamma)} dx_{i\psi}$$

Law of large numbers is valid.

$$w(\mathcal{G}) = \Pi_{(i,j)\in\mathcal{E}(\mathcal{G})} f(\frac{i}{N}, \psi_{N\psi}^{j\psi} \Pi_{(i,j)\notin\mathcal{E}(\mathcal{G})} [1 - f(\frac{i}{N}, \psi_{N\psi}^{j\psi})]$$

 $\sum_{\mathcal{G}\in\mathcal{G}_{N,\epsilon,r_1,r_2,\ldots,r_k}} w(\mathcal{G}) \simeq 1$

The typical probability $w(\mathcal{G})$ under the distribution determined by $f\psi$ has the property $\log w(\mathcal{G}) =$

$$\sum_{(i,j)\in\mathcal{E}(\mathcal{G})}\log f(\frac{i}{N},\psi_{N\psi}^{j\psi}) + \sum_{(i,j)\notin\mathcal{E}(\mathcal{G})}\log[1-f(\frac{i}{N},\psi_{N\psi}^{j})]$$

The typical probability $w(\mathcal{G})$ under the distribution determined by $f\psi$ has the property $\log w(\mathcal{G}) =$

$$\sum_{(i,j)\in\mathcal{E}(\mathcal{G})}\log f(\frac{i}{N},\psi_{N\psi}^{j\psi}) + \sum_{(i,j)\notin\mathcal{E}(\mathcal{G})}\log[1-f(\frac{i}{N},\psi_{N\psi}^{j})]$$

 $\frac{N^2}{2}H(f)$

The typical probability $w(\mathcal{G})$ under the distribution determined by $f\psi$ has the property $\log w(\mathcal{G}) =$

$$\sum_{(i,j)\in\mathcal{E}(\mathcal{G})}\log f(\frac{i}{N},\psi_{N\psi}^{j\psi}) + \sum_{(i,j)\notin\mathcal{E}(\mathcal{G})}\log[1-f(\frac{i}{N},\psi_{N\psi}^{j})]$$

- $rac{N^2}{2} H(f)$

Vou must have at least $\exp[\frac{N^2}{2}H(f)]$ graphs.

$\bullet X\psi$

$x_{1,1}$	$x_{1,2}$	• • •	$x_{1,n\psi}$
$x_{2,1}$	$x_{2,2}$	• • •	$x_{2,n\psi}$
$\dots \psi$	• • •	• • •	• • •
$x_{n,1}$	$x_{n,2}$	• • •	$x_{n,n\psi}$

$\blacksquare k\psi \hspace{-1.5mm} \in \mathcal{K}_{n\psi}$

—	— —	— —	— —	— —	<u> </u>	— —	
	$x_{1,1}$		$x_{1,2}$		• • •		$x_{1,n\psi} \mid$
	——	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
	$x_{2,1}$		$x_{2,2}$		•••		$x_{2,n\psi} \mid$
	——			——	<u> </u>	<u> </u>	
	• • •		• • •		•••		•••
	— —		<u> </u>	— —			
	$x_{n,1}$		$x_{n,2}$		• • •		$x_{n,n\psi} \mid$

$\mathbf{K} = \{ k \psi \ k(x, y), [0, 1]^2 \to [0, 1] \}$

$\mathcal{K} = \{ k \psi \ k(x, y), [0, 1]^2 \rightarrow [0, 1] \}$ $\mathcal{K}_{N\psi} \text{range of } N \psi \times N \psi \text{matrices.}$

 $\mathcal{K} = \{k\psi \ k(x, y), [0, 1]^2 \rightarrow [0, 1]\}$ $\mathcal{K}_{N\psi} \text{range of } N\psi \times N\psi \text{matrices.}$ $P(k_N) = \exp[-\frac{N^2}{2}\log 2]$

 $= \mathcal{K} = \{ k \psi \ k \ (x, y), [0, 1]^2 \to [0, 1] \}$ $\sim \mathcal{K}_{N\psi}$ range of $N\psi \times N\psi$ matrices. $\square P(k_N) = \exp[-\frac{N^2}{2}\log 2]$ $\log P | k_{N\psi} \simeq f |$ $\simeq -I(f)$ $= \frac{N^2}{2} \int f \log(2f) + (1-f) \log(2(1-f)) dx dy \psi$ $= N^2 [H(f) - \frac{1}{2} \log 2]$

Topology? Weak ? $k\psi \rightarrow r(\Gamma, f)$ is not continuous.

- $\blacktriangleright k \psi \rightarrow r(\Gamma, f)$ is not continuous.
- If LDP holds in a topology in which it is continuous, then

$$J(\Gamma_1, r_1; \dots; \Gamma_k, r_k)) = \frac{1}{2} \log 2 - \inf_{\substack{k: r(\Gamma_i, k) \\ 1 \le i \le k}} I(k)$$
$$= \sup_{\substack{k: r(\Gamma_i, k) \\ 1 \le i \le k}} H(k)$$

- $k\psi \rightarrow r(\Gamma, f)$ is not continuous.
- If LDP holds in a topology in which it is continuous, then

$$J(\Gamma_1, r_1; \dots; \Gamma_k, r_k)) = \frac{1}{2} \log 2 - \inf_{\substack{k: r(\Gamma_i, k) \\ 1 \le i \le k}} I(k)$$
$$= \sup_{\substack{k: r(\Gamma_i, k) \\ 1 \le i \le k}} H(k)$$

Strong topology like $L_{p\psi}$ will be OK.

- $k\psi \rightarrow r(\Gamma, f)$ is not continuous.
- If LDP holds in a topology in which it is continuous, then

$$J(\Gamma_1, r_1; \dots; \Gamma_k, r_k)) = \frac{1}{2} \log 2 - \inf_{\substack{k: r(\Gamma_i, k) \\ 1 \le i \le k}} I(k)$$
$$= \sup_{\substack{k: r(\Gamma_i, k) \\ 1 \le i \le k}} H(k)$$

Strong topology like L_{pψ}will be OK.
No chance. Fluctuations.

Enter "cut" topology

Enter "cut" topology
cut metric is d_□(k₁, k₂) =

$$\sup_{|\phi|,|| \le 1} \int [k_1(x,y) - k_2(x,y)]\phi(x) \quad (y)dxdy\psi$$

Enter "cut" topology
cut metric is d_□(k₁, k₂) =

$$\sup_{|\phi|,|| \le 1} \int [k_1(x,y) - k_2(x,y)]\phi(x) \quad (y)dxdy\psi$$

 $\sup_{A,B\psi} \int_{A\times B\psi} [k_1(x,y) - k_2(x,y)] dx dy \psi$

If $d_{\Box}(k_n, k) \to 0$ and $\sup_{n, x, y \notin} k_n(x, y) \le C$

Limits of large graphs.

- Limits of large graphs.
- **C**ount the number of occurrences of Γ in the graph.

- Limits of large graphs.
- **Count the number of occurrences of** Γ in the graph.
- Divide by the number in a complete graph.

Assume the limit (Γ) of the ratio exists for every Γ .

Assume the limit (Γ) of the ratio exists for every Γ. What are possible limits? Graphons.

Assume the limit (Γ) of the ratio exists for every Γ. What are possible limits? Graphons. Representation.

- Assume the limit (Γ) of the ratio exists for every Γ.
 What are possible limits? Graphons.
- **Representation**.
- There is s symmetric function f(x, y) on $[0, 1] \times [0, 1]$ such that

- Assume the limit (Γ) of the ratio exists for every Γ.
 What are possible limits? Graphons.
- **Representation**.
- There is s symmetric function f(x, y) on $[0, 1] \times [0, 1]$ such that

For any graph Γ with vertices $\mathcal{V}(\Gamma)$ and edges $\mathcal{E}(\Gamma)$

 $r(\Gamma, f) = \int_{[0,1]^{\mathcal{V}(\Gamma)}} \Pi_{(i,j)\in\mathcal{E}(\Gamma)} f(x_i, x_j) \Pi_{i\in\mathcal{V}(\Gamma)} dx_{i\psi}$

$$r(\Gamma, f) = r(\Gamma, g) \text{ for all } \Gamma \text{ if and only if}$$
$$f(x, y) = g(\sigma x, \sigma y) \text{ for some } \sigma \notin \mathcal{H}.\psi$$

 $r(\Gamma, f) = r(\Gamma, g) \text{ for all } \Gamma \text{ if and only if}$ $f(x, y) = g(\sigma x, \sigma y) \text{ for some } \sigma \psi \in \mathcal{H}. \psi$

Cut topology is the smallest topology on \mathcal{K}/\mathcal{H} that makes $f\psi \rightarrow r(\Gamma, f)$ continuous for every Γ .

$$r(\Gamma, f) = r(\Gamma, g) \text{ for all } \Gamma \text{ if and only if}$$
$$f(x, y) = g(\sigma x, \sigma y) \text{ for some } \sigma \notin \mathcal{H}.\psi$$

Cut topology is the smallest topology on \mathcal{K}/\mathcal{H} that makes $f\psi \rightarrow r(\Gamma, f)$ continuous for every Γ .

This topology works for LLN. $2^{n\psi} \times 2^{n\psi} < \sqrt{2}^{n^2}$

Upper Bound needs compactness, or exponential tightness.

Upper Bound needs compactness, or exponential tightness.

 \mathbf{K} is not compact under cut topology.

Upper Bound needs compactness, or exponential tightness.

\mathbf{K} is not compact under cut topology.

But \mathcal{K}/\mathcal{H} is by a theorem of Lovász-Szegedy

- Upper Bound needs compactness, or exponential tightness.
- \mathbf{K} is not compact under cut topology.
- **But** \mathcal{K}/\mathcal{H} is by a theorem of Lovász-Szegedy
- It may be possible to prove the large deviation estimate in the topology induced by "cut" topology on \mathcal{K}/\mathcal{H}

Need to estimate the probability of a neighborhood of the orbit.

Need to estimate the probability of a neighborhood of the orbit.

Szemerédi's regularity lemma

Need to estimate the probability of a neighborhood of the orbit.

- Szemerédi's regularity lemma
- **Replaces the** \mathcal{H} orbit by a $\pi_{n\psi}$ permutation orbit.

- Need to estimate the probability of a neighborhood of the orbit.
- Szemerédi's regularity lemma
- **Replaces the \mathcal{H} orbit by a \pi_{n\psi} permutation orbit.**

 $\Box \log n! = o(n^2)$

Example. Chiranjib Mukherjee

Brownian Motion

Example. Chiranjib Mukherjee

Brownian Motion

$$= L_{t\psi} = \frac{1}{T\psi} \int_0^T \delta_{x(s)} ds\psi$$

Example. Chiranjib Mukherjee

Brownian Motion

$$= L_t \psi = \frac{1}{T_{\psi}} \int_0^T \delta_{x(s)} ds \psi$$

$$\begin{split} \lambda(V) &= \lim_{T \to \infty} \frac{1}{T\psi} \log E[\exp[\int_0^T V(x(s))ds]] \\ &= \sup_{|f|_2 = 1} \left[\int V(x)[f(x)]^2 dx - \frac{1}{2} \int |\nabla f|^2 dx\psi \right] \\ &= \sup_{f \ge 0 \ |f|_1 = 1} \left[\int V(x)f(x)dx - \frac{1}{8} \int \frac{|\nabla f|^2}{f} dx \right] \end{split}$$

 $P[L_{T\psi} \simeq f] = \exp[-TI(f) + o(T)]$

$$P[L_{T\psi} \simeq f] = \exp[-TI(f) + o(T)]$$
$$I(f) = \frac{1}{8} \int \frac{|\nabla f|^2}{f\psi} dx\psi$$

 $E\psi \exp\left[\frac{1}{T\psi}\int_{0}^{T\psi}\int_{0}^{T\psi}V((s)-(t))dsdt\right]$

$$E \psi \exp\left[\frac{1}{T\psi} \int_{0}^{T\psi} \int_{0}^{T\psi} V((s) - (t)) ds dt\right]$$
$$= V(x) \to 0 \text{ as } |x| \to \infty$$

$$E \oint \exp\left[\frac{1}{T\psi} \int_{0}^{T\psi} \int_{0}^{T\psi} V((s) - (t)) ds dt\right]$$
$$= V(x) \to 0 \text{ as } |x| \to \infty$$
$$= \exp[cT\psi + o(T)] ?.$$

$$c = \sup_{f \ge 0 \ |f|_1 = 1} \left[\int V(x-y)f(x)f(y)dxdy - \frac{1}{8} \int \frac{|\nabla f|^2}{f}dx \right] \psi$$

$$\begin{split} E \oint \exp\left[\frac{1}{T\psi} \int_{0}^{T\psi} \int_{0}^{T\psi} V((s) - (t)) ds dt\right] \\ V(x) \to 0 \text{ as } |x| \to \infty \\ \exp[cT\psi + o(T)] ?. \end{split}$$

$$c = \sup_{f \ge 0 \ |f|_1 = 1} \left[\int V(x-y)f(x)f(y)dxdy - \frac{1}{8} \int \frac{|\nabla f|^2}{f}dx \right] \psi$$

Compactification of $\mathcal{M}(\mathcal{R}^d)/\mathcal{R}^{d\psi}$

If we only need to estimate

One point comactification of $\mathcal{R}^{d\psi}$ is enough.

If we only need to estimate

$$E \psi \exp[\int_0^{T\psi} V((s)) ds] \bigg]$$

One point comactification of $\mathcal{R}^{d\psi}$ is enough. $\{f\psi \ f\psi \ge 0, \int f(x) dx \psi \le 1\}.$

If we only need to estimate

$$E \psi \exp[\int_0^{T\psi} V(-(s)) ds] \bigg]$$

One point comactification of R^{dψ}is enough.
{fψ fψ≥ 0, ∫ f(x)dxψ≤ 1}.
Vague topology is OK.

Translation invariant comapactification?

Translation invariant comapactification? $\{\tilde{\mu}\}$

Some remarks on Large Deviations p.34/??

Translation invariant comapactification? $\{\tilde{\mu} \}$ $\sum \mu \psi(\mathcal{R}^d) \leq 1, d\mu \psi = f \psi dx \psi$

Translation invariant comapactification? $\{\tilde{\mu} \}$ $\sum \mu \psi(\mathcal{R}^d) \le 1, d\mu \psi = f \psi dx \psi$ $I(\{f\psi\}) = \sum_{i \neq 8} \int_{-1}^{|\nabla f_{\alpha}|^2} dx \not = \sum I(f\psi)$

Translation invariant comapactification? { $\tilde{\mu}$ } $\sum \mu \psi(\mathcal{R}^d) \leq 1, d\mu \psi = f \psi dx \psi$ $I(\{f\psi\}) = \sum_{i\psi 8} \int \frac{|\nabla f_{\alpha}|^2}{f_{\alpha}} dx \not = \sum I(f\psi)$

 $c \not= \sup_{\{f_{\alpha}\}} \left[\sum \int V(x) (f\psi * \bar{f}\psi)(x) dx - \sum I(f\psi) \right]$

Translation invariant comapactification? $\blacksquare \{ \tilde{\mu} \}$ $\blacksquare \sum \mu \psi(\mathcal{R}^d) \leq 1, \, d\mu \psi = f \psi dx \psi$ $= I(\lbrace f\psi \rbrace) = \sum_{i\psi 8} \int \frac{|\nabla f_{\alpha}|^2}{f_{\alpha}} dx \not = \sum I(f\psi)$ $c \not= \sup_{\{f_{n}\}} \left| \sum \int V(x) (f \psi * \bar{f} \psi)(x) dx - \sum I(f \psi) \right|$ $c \not= \sup_{f \not \psi} \left[\int V(x) (f \psi * \bar{f})(x) dx - I(f) \right]$

Needs Compactness

Needs Compactness D(µ ₁, µ ₂)

Needs Compactness $D(\widetilde{\mu}_1, \widetilde{\mu}_2)$ $\sum \frac{1}{2^j} |\int F_j(x_1, \dots, x_{k_j}) [\Pi_{r=1}^{k_j} \mu_1(dx_r) - \Pi_{r=1}^{k_j} \mu_2(dx_r)]$

Needs Compactness D($\tilde{\mu}_1, \tilde{\mu}_2$) $\sum \frac{1}{2^j} |\int F_j(x_1, \dots, x_{k_j}) [\Pi_{r=1}^{k_j} \mu_1(dx_r) - \Pi_{r=1}^{k_j} \mu_2(dx_r)]$ {*F_j*} are translation invariant

Needs Compactness D(\$\tilde{\mu}_1\$, \$\tilde{\mu}_2\$) \$\sum \frac{1}{2^j}\$ | \$\int F_j(x_1, \ldots, x_{k_j})[\$\Pi_{r=1}^{k_j}\$\mu_1(dx_r)\$-\$\Pi_{r=1}^{k_j}\$\mu_2(dx_r)\$| \$\{F_j\}\$ are translation invariant \$F(x_1 + x, \ldots, x_{k\nu} + x)\$ = \$F(x_1, \ldots, x_k\$)\$

Needs Compactness D(µ̃₁, µ̃₂) ∑ 1/2^j | ∫ F_j(x₁,...,x_{k_j})[Π^{k_j}_{r=1}µ₁(dx_r)−Π^{k_j}_{r=1}µ₂(dx_r)| {F_j} are translation invariant F(x₁ + x,...,x_{kψ}+ x) = F(x₁,...,x_k) Complete with this metric.

Needs Compactness $\square D(\widetilde{\mu}_1,\widetilde{\mu}_2)$ $\sum \frac{1}{2^{j}} \int F_{j}(x_{1}, \ldots, x_{k_{j}}) [\Pi_{r=1}^{k_{j}} \mu_{1}(dx_{r}) - \Pi_{r=1}^{k_{j}} \mu_{2}(dx_{r})]$ \blacksquare { F_i } are translation invariant $= F(x_1 + x, \dots, x_{k\psi} + x) = F(x_1, \dots, x_k)$ Complete with this metric. Completion is compact.

What is in the completion?

What is in the completion? $\{\widetilde{\mu}_{-}\}$ $D(\{\widetilde{\mu} \}, \{\widetilde{\mu} \}) = \sum \frac{1}{2^{j\psi}} \int F_j(x_1, \dots, x_{k_j})$ $\sum \Pi \mu \overline{\psi(dx_r)} - \sum \Pi \mu \overline{\psi(dx_r)} |$

What is in the completion? $\{\widetilde{\mu} \}$ $D(\{\widetilde{\mu} \}, \{\widetilde{\mu} \}) = \sum \frac{1}{2^{j\psi}} \int F_j(x_1, \dots, x_{k_j})$ $[\sum \Pi \mu \psi(dx_r) - \sum \Pi \mu \psi(dx_r)]$

Need to show that if $D(\{\widetilde{\mu} \}, \{\widetilde{\mu} \}) = 0$ then

What is in the completion? $\{\widetilde{\mu}\}$ $D(\{\widetilde{\mu} \}, \{\widetilde{\mu} \}) = \sum \frac{1}{2^{j\psi}} \int F_j(x_1, \dots, x_{k_j})$ $\left|\sum \Pi \mu \psi(dx_r) - \sum \Pi \mu \psi(dx_r)\right|$

Need to show that if $D(\{\widetilde{\mu} \}, \{\widetilde{\mu} \}) = 0$ then $\{\widetilde{\mu} \} = \{\widetilde{\mu} \}$

Identification of $\{\widetilde{\mu}\}$ from

Identification of $\{\widetilde{\mu}\}$ from $\sum \int F(x_1, \dots, x_k) \Pi \mu \psi(dx_r)$

Identification of {\$\tilde{\mathcal{\mu}\$}\$} from \$\sum f(x_1, \ldots, x_k) \Pi(dx_r)\$ \$\sum f(x_1, \ldots, x_k) \Pi(dx_r)\$ \$\sum f(x_1, \ldots, x_k) \Pi(dx_r)\$

Identification of
$$\{\tilde{\mu}\}$$
 from

$$\sum \int F(x_1, \dots, x_k) \Pi \mu \psi(dx_r)$$

$$\sum \left[\int F(x_1, \dots, x_k) \Pi \mu \psi(dx_r)\right]^m$$

$$\int F(x_1, \dots, x_k) \Pi \mu \psi(dx_r)$$

Identification of $\{\tilde{\mu}\}$ from $\sum \int F(x_1, \dots, x_k) \Pi \mu \psi(dx_r)$ $\sum \left[\int F(x_1, \dots, x_k) \Pi \mu \psi(dx_r)\right]^m$ $\int F(x_1, \dots, x_k) \Pi \mu \psi(dx_r)$ $F \psi = \exp[\sqrt{-1} \sum t_i x_i] \text{ provided } \sum_{i} t_{i} \psi = 0$

Identification of $\{\widetilde{\mu}\}$ from $\square \sum \int F(x_1,\ldots,x_k) \Pi \mu \psi(dx_r)$ $\sum \left[\int F(x_1, \dots, x_k) \Pi \mu \psi(dx_r) \right]^n$ $= \int F(x_1, \ldots, x_k) \Pi \mu \psi(dx_r)$ $\blacksquare F\psi = \exp[\sqrt{-1\sum t_i x_i}] \text{ provided } \sum_i t_i = 0$ $\blacksquare \Pi \phi(t_i) \text{ provided } \sum_{i \notin i \notin i} t_{i \notin i} = 0$

$\bullet |\phi(t)|^2$

$|\phi(t)|^2$ $\phi(t) = |\phi(t)|\chi(t)$

$\begin{aligned} |\phi(t)|^2 \\ \phi(t) &= |\phi(t)|\chi(t) \\ \Pi_i \chi(t_i) &= 1 \text{ if } \sum_{i \notin i \notin i} t_{i \notin i} = 0 \end{aligned}$

$\begin{aligned} |\phi(t)|^2 \\ \phi(t) &= |\phi(t)|\chi(t) \\ \Pi_i \chi(t_i) &= 1 \text{ if } \sum_{i \notin i \psi} 0 \\ \chi(t+s) &= \chi(t)\chi(s), \, \chi(nt) = [\chi(t)]^{n\psi} \end{aligned}$

$$\begin{aligned} |\phi(t)|^2 \\ \phi(t) &= |\phi(t)|\chi(t) \\ \Pi_i \chi(t_i) &= 1 \text{ if } \sum_{i \notin i \psi} = 0 \\ \chi(t+s) &= \chi(t)\chi(s), \, \chi(nt) = [\chi(t)]^{n\psi} \\ \chi(t) &= e^{i \# a \psi} \end{aligned}$$

$\begin{aligned} &|\phi(t)|^2\\ &\phi(t) = |\phi(t)|\chi(t)\\ &\Pi_i\chi(t_i) = 1 \text{ if } \sum_{i\psi} t_{i\psi} = 0\\ &\chi(t+s) = \chi(t)\chi(s), \, \chi(nt) = [\chi(t)]^{n\psi}\\ &\chi(t) = e^{i\psi a\psi}\\ &a \text{ is not determined.} \end{aligned}$

THANK YOU