Some remarks on Large Deviations

S.R.S. Varadhan

Courant Institute, NYU

Conference in memory of
Larry Shepp
April 25, 2014

- We want to estimate certain probabilities.
\square We want to estimate certain probabilities.
- Large Deviation Theory is a tool.
\square We want to estimate certain probabilities.
- Large Deviation Theory is a tool.
\square Need to be set up properly
\square We want to estimate certain probabilities.
- Large Deviation Theory is a tool.
- Need to be set up properly
- Look at three examples
- LDP
- LDP
$\square \log P_{n}[A] \simeq-n \inf _{x \in A_{\psi}} I(x)$
- LDP
$\square \log P_{n}[A] \simeq-n \inf _{x \in A_{\psi}} I(x)$
\square Estimates are local.
- LDP
$\square \log P_{n}[A] \simeq-n \inf _{x \in A_{\psi}} I(x)$
- Estimates are local.
\square Upper bound is valid for compact sets
- LDP
$\square \log P_{n}[A] \simeq-n \inf _{x \in A_{\psi}} I(x)$
- Estimates are local.
- Upper bound is valid for compact sets
\square Lower bound is valid for open sets
- LDP
$\square \log P_{n}[A] \simeq-n \inf _{x \in A_{\psi} I}(x)$
- Estimates are local.
\square Upper bound is valid for compact sets
\square Lower bound is valid for open sets
\square Upper bound for closed sets?
- LDP
$\square \log P_{n}[A] \simeq-n \inf _{x \in A_{\psi} I}(x)$
\square Estimates are local.
- Upper bound is valid for compact sets
- Lower bound is valid for open sets
\square Upper bound for closed sets?
$\square \mathcal{X}$ is compact.
- LDP
$\square \log P_{n}[A] \simeq-n \inf _{x \in A_{4}} I(x)$
\square Estimates are local.
- Upper bound is valid for compact sets
- Lower bound is valid for open sets
\square Upper bound for closed sets?
$\square \mathcal{X}$ is compact.
- If not, we need some estimates
- LDP
$\square \log P_{n}[A] \simeq-n \inf _{x \in A_{4}} I(x)$
\square Estimates are local.
- Upper bound is valid for compact sets
- Lower bound is valid for open sets
\square Upper bound for closed sets?
$\square \mathcal{X}$ is compact.
- If not, we need some estimates
- Compactification or some control
$-\frac{1}{n y} \log E^{P_{n}}\left[\exp [n F(x)] \rightarrow \sup _{x}[F(x)-I(x)]\right.$
$\square \frac{1}{n} \log E^{P_{n}}\left[\exp [n F(x)] \rightarrow \sup _{x}[F(x)-I(x)]\right.$
- $F(y)-I(y)<F\left(x_{0}\right)-I\left(x_{0}\right)$ for $y \psi=x_{0}$
$\square \frac{1}{n \psi} \log E^{P_{n}}\left[\exp [n F(x)] \rightarrow \sup _{x}[F(x)-I(x)]\right.$
$\square F(y)-I(y)<F\left(x_{0}\right)-I\left(x_{0}\right)$ for $y \psi=x_{0}$
$\square \frac{1}{Z_{n}} \exp [n F(x)] d P_{n \psi} \rightarrow \delta_{x_{0}}$
$\square \frac{1}{n} \log E^{P_{n}}\left[\exp [n F(x)] \rightarrow \sup _{x}[F(x)-I(x)]\right.$
- $F(y)-I(y)<F\left(x_{0}\right)-I\left(x_{0}\right)$ for $y \psi=x_{0}$
- $\frac{1}{Z_{n}} \exp [n F(x)] d P_{n \psi} \rightarrow \delta_{x_{0}}$
- LSC implies upper bound.
$\square \frac{1}{n \psi} \log E^{P_{n}}\left[\exp [n F(x)] \rightarrow \sup _{x}[F(x)-I(x)]\right.$
- $F(y)-I(y)<F\left(x_{0}\right)-I\left(x_{0}\right)$ for $y \psi=x_{0}$
- $\frac{1}{Z_{n}} \exp [n F(x)] d P_{n \psi} \rightarrow \delta_{x_{0}}$
\square LSC implies upper bound.
$\square G: X \psi \rightarrow Y \psi$
$\square \frac{1}{n \psi} \log E^{P_{n}}\left[\exp [n F(x)] \rightarrow \sup _{x}[F(x)-I(x)]\right.$
- $F(y)-I(y)<F\left(x_{0}\right)-I\left(x_{0}\right)$ for $y \psi=x_{0}$
- $\frac{1}{Z_{n}} \exp [n F(x)] d P_{n \psi} \rightarrow \delta_{x_{0}}$
\square LSC implies upper bound.
$\square G: X \psi \rightarrow Y \psi$
$\square Q_{n \psi}=P_{n} G^{-1}$
$\square \frac{1}{n} \log E^{P_{n}}\left[\exp [n F(x)] \rightarrow \sup _{x}[F(x)-I(x)]\right.$
- $F(y)-I(y)<F\left(x_{0}\right)-I\left(x_{0}\right)$ for $y \psi=x_{0}$
- $\frac{1}{Z_{n}} \exp [n F(x)] d P_{n \psi} \rightarrow \delta_{x_{0}}$
\square LSC implies upper bound.
$\square G: X \psi \rightarrow Y \psi$
$\square Q_{n \psi}=P_{n} G^{-1}$
$\square J(y)=\inf _{x \in G^{-1}(y)} I(x)$
- Larry Shepp
- Larry Shepp
$\square x(t)$ is Gaussian process on $[0,1]$ with mean 0.
- Larry Shepp
$\square x(t)$ is Gaussian process on $[0,1]$ with mean 0.
$\square \rho(s, t)$ is its covariance. Smooth.
- Larry Shepp
$\square x(t)$ is Gaussian process on $[0,1]$ with mean 0.
$\square \rho(s, t)$ is its covariance. Smooth.
- $P\left[(\lambda G)^{c}\right] \leq \exp \left[-c(G) \lambda^{2}+o\left(\lambda^{2}\right)\right]$
- Larry Shepp
$\square x(t)$ is Gaussian process on $[0,1]$ with mean 0 .
$\square \rho(s, t)$ is its covariance. Smooth.
- $P\left[(\lambda G)^{c}\right] \leq \exp \left[-c(G) \lambda^{2}+o\left(\lambda^{2}\right)\right]$
$\square c(G)=\inf _{f \in G^{c}} I(f)$

$$
\begin{aligned}
I(f)= & \sup _{g \psi}\left[\int_{0}^{1} f(t) g(t) d t \psi\right. \\
& -\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \rho(s, t) g(s) g(t) d s d t \psi
\end{aligned}
$$

- If $G=\left\{f \psi z \sup _{0 \leq t \leq 1}|f(t)| \leq 1\right\}$
- If $G=\left\{f \psi \sup _{0 \leq t \leq 1}|f(t)| \leq 1\right\}$
$\square c(G)=\left[2 \sup _{0 \leq t \leq 1} \rho(t, t)\right]^{-1}$
- If $G=\left\{f \psi \sup _{0 \leq t \leq 1}|f(t)| \leq 1\right\}$
$\square c(G)=\left[2 \sup _{0 \leq t \leq 1} \rho(t, t)\right]^{-1}$
\square Tail is coming from the one with the largest variance.
- If $G=\left\{f \psi 2 \sup _{0 \leq t \leq 1}|f(t)| \leq 1\right\}$
$\square c(G)=\left[2 \sup _{0 \leq t \leq 1} \rho(t, t)\right]^{-1}$
\square Tail is coming from the one with the largest variance.
\square Is this always true?
- If $G=\left\{f \psi \sup _{0 \leq t \leq 1}|f(t)| \leq 1\right\}$
$\square c(G)=\left[2 \sup _{0 \leq t \leq 1} \rho(t, t)\right]^{-1}$
- Tail is coming from the one with the largest variance.
\square Is this always true?
- Does every almost surely bounded Gaussian process have a Gaussian tail?
- If $G=\left\{f \psi \sup _{0 \leq t \leq 1}|f(t)| \leq 1\right\}$
$\square c(G)=\left[2 \sup _{0 \leq t \leq 1} \rho(t, t)\right]^{-1}$
\square Tail is coming from the one with the largest variance.
\square Is this always true?
- Does every almost surely bounded Gaussian process have a Gaussian tail?
\square Do the constants always match?
- Landau and Shepp proved a Gaussian bound.
\square Landau and Shepp proved a Gaussian bound. - Sankhya.
\square Landau and Shepp proved a Gaussian bound.
- Sankhya.
- It is enough to prove an exponential tail.

Landau and Shepp proved a Gaussian bound.

Sankhya.
It is enough to prove an exponential tail.

$$
\begin{aligned}
P[||X|| \geq C \sqrt{ } n] & =P\left[\begin{array}{c}
\left|X_{1}+X_{2}+\cdots+X_{n}\right| \\
\sqrt{ } n \psi
\end{array} \geq C \sqrt{ } n\right] \\
& \leq P\left[\left|X_{1}\right|+\cdots \cdot\left|X_{n}\right| \geq C n\right] \\
& \leq \exp [-c n]
\end{aligned}
$$

Landau and Shepp proved a Gaussian bound.
Sankhya.
It is enough to prove an exponential tail.

$$
\begin{aligned}
P[||X|| \geq C \sqrt{ } n] & =P\left[\begin{array}{c}
\left|X_{1}+X_{2}+\cdots+X_{n}\right| \\
\sqrt{ } n \psi
\end{array} \geq C \sqrt{ } n\right] \\
& \leq P\left[\left|X_{1}\right|+\cdots\left|X_{n}\right| \geq C n\right] \\
& \leq \exp [-c n]
\end{aligned}
$$

Provided $C>E[\mid X]]$ and $E\left[e^{\theta|X|}\right]<\infty$

- Skhorohod published a proof of an exponential bound in a Banach Space.
- Skhorohod published a proof of an exponential bound in a Banach Space.
$\square X \psi=X(1) . X(t)$ is a continuos process with independent increments.

Skhorohod published a proof of an exponential bound in a Banach Space.
$X \psi=X(1) . X(t)$ is a continuos process with independent increments.

$$
\begin{aligned}
P[|X(1)| \geq n] & \leq P\left[\sup _{0 \leq t \leq 1}|X(t)| \geq n\right] \\
& \leq P\left[\tau_{1}+\tau_{2}+\ldots+\tau_{n \psi} \leq 1\right] \\
& \leq e\left[E\left[e \vec{\psi}^{\left(\tau_{1}+\cdots+\tau_{n}\right)}\right]\right] \\
& =e\left[E\left[e \vec{\psi}^{\tau}\right]^{n}\right]
\end{aligned}
$$

- Fernique 1970
- Fernique 1970
$\square X, Y$ Yare two independent copies.
- Fernique 1970
$\square X, Y y$ are two independent copies.
\square So are ${ }_{\sqrt{2}}^{X+Y}$ and $\underset{\sqrt{2}}{X-Y \psi}$
- Fernique 1970
$\square X, Y 4$ are two independent copies.
\square So are ${ }_{\sqrt{2}}^{X+Y}$ and $\underset{\sqrt{2}}{X-Y \psi}$
$\square F(t)=P[|X| \geq t]$
- Fernique 1970
- X, Y4are two independent copies.
- So are $\underset{\sqrt{2}}{X+Y}$ and $\underset{\sqrt{2}}{X-Y \psi}$
$\square F(t)=P[|X| \geq t]$
$\square F(t)[1-F(s)] \leq\left[F\left(\frac{t-s}{\sqrt{2}}\right)\right]^{2}$
- Fernique 1970
- X, Y4are two independent copies.
- So are ${ }_{\sqrt{2}}^{X+Y}$ and $\underset{\sqrt{2}}{X-Y \psi}$
$\square F(t)=P[|X| \geq t]$
- $F(t)[1-F(s)] \leq\left[F\left(\frac{t-s}{\sqrt{2}}\right)\right]^{2}$
- Uses this to to show the Gaussian estimate with some constant for $\|X\|$. i.e $\log F(t) \leq-c t^{2}$.
- Fernique 1970
- X, Y4are two independent copies.
- So are ${ }_{\sqrt{2}}^{X+Y}$ and $\underset{\sqrt{2}}{X-Y \psi}$
$\square F(t)=P[|X| \geq t]$
- $F(t)[1-F(s)] \leq\left[F\left(\frac{t-s}{\sqrt{2}}\right)\right]^{2}$
\square Uses this to to show the Gaussian estimate with some constant for $\|X\|$. i.e $\log F(t) \leq-c t^{2}$.
\square Improves it to get the right constant.
- This would follow from a general LDP for sums of IID's in Banach Space.
- This would follow from a general LDP for sums of IID's in Banach Space.
- This was done in 1977
- This would follow from a general LDP for sums of IID's in Banach Space.
- This was done in 1977
- $E\left[e^{\theta|X|}\right]<\psi \infty$ for all $\theta>0$.
- This would follow from a general LDP for sums of IID's in Banach Space.
- This was done in 1977
- $E\left[e^{\theta|X|}\right]<\psi \infty$ for all $\theta>0$.
- For a Gaussian this follows from $E\left[e^{\theta|X|}\right]<\infty$ for some $\theta>0$.

Example. Sourav Chatterjee

- If $r \psi=n x$ by Stirling's formula
$\binom{n \psi}{r \psi}=\exp [-n[x \log x+(1-x) \log (1-x)]+o(n)]$

Example. Sourav Chatterjee

- If $r \psi=n x$ by Stirling's formula

$$
\binom{n \psi}{r \psi}=\exp [-n[x \log x+(1-x) \log (1-x)]+o(n)]
$$

- For coin tossing with a biased coin

$$
I(x)=x \log \frac{x \psi}{p \psi}+(1-x) \log \begin{array}{r}
1-x \psi \\
1-p \psi
\end{array}
$$

- Counting the number of graphs with specified subgraph counts.
- Counting the number of graphs with specified subgraph counts.
- Nuvertices. The number of possible subgraphs Γ

$$
c(N, \Gamma) \simeq c(\Gamma) N^{k} \psi \cdot \psi
$$

- Counting the number of graphs with specified subgraph counts.
- Nuvertices. The number of possible subgraphs Γ with $k \not \psi v e r t i c e s ~ i n ~ a ~ c o m p l e t e ~ g r a p h ~ o f ~ s i z e ~ N \psi i s ~$

$$
c(N, \Gamma) \simeq c(\Gamma) N^{k \psi} \cdot \psi
$$

- In a given graph \mathcal{G} this may be smaller and the ratio is some fraction

$$
r(N, \mathcal{G}, \Gamma) \leq 1
$$

\square Count the number of graphs \mathcal{G} having $N \not \psi v e r t i c e s$ with specified values $r\left(N, \mathcal{G}, \Gamma_{i}\right)=r_{i f}$ for a finite number of Γ 's.

- Count the number of graphs \mathcal{G} having $N \not \psi v e r t i c e s$ with specified values $r\left(N, \mathcal{G}, \Gamma_{i}\right)=r_{i f}$ for a finite number of Γ 's.
\square Their number is

$$
\exp \left[N^{2} J\left(\Gamma_{1}, r_{1} ; \ldots ; \Gamma_{k}, r_{k}\right)+o\left(N^{2}\right)\right]
$$

- Count the number of graphs \mathcal{G} having $N \not \psi v e r t i c e s$ with specified values $r\left(N, \mathcal{G}, \Gamma_{i}\right)=r_{i n}$ for a finite number of Γ 's.
\square Their number is

$$
\exp \left[N^{2} J\left(\Gamma_{1}, r_{1} ; \ldots ; \Gamma_{k}, r_{k}\right)+o\left(N^{2}\right)\right]
$$

- Out of a total of $2\left(\begin{array}{c}\binom{N}{2}\end{array}\right.$ possible graphs with $N \psi$ vertices.
- Count the number of graphs \mathcal{G} having $N \not \psi v e r t i c e s$ with specified values $r\left(N, \mathcal{G}, \Gamma_{i}\right)=r_{i f}$ for a finite number of Γ 's.
\square Their number is

$$
\exp \left[N^{2} J\left(\Gamma_{1}, r_{1} ; \ldots ; \Gamma_{k}, r_{k}\right)+o\left(N^{2}\right)\right]
$$

- Out of a total of $2\left(\begin{array}{c}\binom{N}{2}\end{array}\right.$ possible graphs with $N \psi$ vertices.
$\square 0 \leq J \psi \leq \frac{1}{2} \log 2$
- Count the number of graphs \mathcal{G} having $N \not \psi v e r t i c e s$ with specified values $r\left(N, \mathcal{G}, \Gamma_{i}\right)=r_{i f}$ for a finite number of Γ 's.
\square Their number is

$$
\exp \left[N^{2} J\left(\Gamma_{1}, r_{1} ; \ldots ; \Gamma_{k}, r_{k}\right)+o\left(N^{2}\right)\right]
$$

- Out of a total of $2\left(\begin{array}{c}\binom{N}{2}\end{array}\right.$ possible graphs with $N \psi$ vertices.
$\square 0 \leq J \psi \leq \frac{1}{2} \log 2$
expression for $J \psi$

$0 \leq x, y \psi \leq 1 ; f(x, y)=f(y, x) ; 0 \leq f \psi \leq 1$

$$
\begin{aligned}
& 0 \leq x, y \backslash \leq 1 ; f(x, y)=f(y, x) ; 0 \leq f \psi \leq 1 \\
& r(\Gamma, f)=\int_{[0,1]^{\gamma(\Gamma)}} \prod_{(i, j) \in \mathcal{E}(\Gamma)} f\left(x_{i}, x_{j}\right) \prod_{i \in \mathcal{V}(\Gamma)} d x_{i \psi}
\end{aligned}
$$

$$
\begin{gathered}
0 \leq x, y \ell \leqslant 1 ; f(x, y)=f(y, x) ; 0 \leq f \psi \leq 1 \\
r(\Gamma, f)=\int_{[0,1] \gamma(\Gamma)} \prod_{(i, j) \in \mathcal{E}(\Gamma)} f\left(x_{i}, x_{j}\right) \prod_{i \in \mathcal{V}(\Gamma)} d x_{i \psi} \\
H(f)=-\frac{1}{2} \int[f \log f \psi \nmid(1-f) \log (1-f)] d x d y \psi
\end{gathered}
$$

$$
\begin{aligned}
& 0 \leq x, y \cup \leq 1 ; f(x, y)=f(y, x) ; 0 \leq f \psi \leq 1 \\
& r(\Gamma, f)=\int_{[0,1]^{\gamma(\Gamma)}} \prod_{(i, j) \in \mathcal{E}(\mathrm{\Gamma})} f\left(x_{i}, x_{j}\right) \prod_{i \in \mathcal{V}(\mathrm{\Gamma})} d x_{i \psi} \\
& H(f)=-\frac{1}{2} \int[f \log f \psi \psi(1-f) \log (1-f)] d x d y \psi \\
& J \psi=\sup _{\substack{\text { s.r. } \\
f, \mathbb{T}_{i, f} \leq t \leq k_{i} \\
1 \leq r_{i}}} H(f)
\end{aligned}
$$

- Let $f(x, y)$ be a continuous function.
- Let $f(x, y)$ be a continuous function.
- Consider a "random" graph with Nuvertices labeled $\{1,2, \ldots, N\} .(i, j)$ is an edge with probability $f\left(\frac{i v}{N}, 4, \frac{i v}{N v} \psi\right.$.
\square Let $f(x, y)$ be a continuous function.
- Consider a "random" graph with Nuvertices labeled $\{1,2, \ldots, N\} .(i, j)$ is an edge with probability $f\left(\frac{i}{N}, \frac{\dot{d} v}{N \psi}\right)$.
- The "expected number" of subgraphs Γ can be easily calculated.
- Consider a map ϕ of Γ onto $\{1,2, \ldots, N\}$.
- Consider a map ϕ of Γ onto $\{1,2, \ldots, N\}$.

There are $N(N \psi-1) \cdots(N \psi-k+1)$ of them

- Consider a map ϕ of Γ onto $\{1,2, \ldots, N\}$.
- There are $N(N \psi-1) \cdots(N \psi-k+1)$ of them
\square The chance that one of them maps edges in Γ to edges in our random graph is

$$
\Pi_{\left(v, v^{\prime}\right) \in E(\Gamma)} f\left(\begin{array}{c}
\phi(v) \\
N
\end{array}, \psi(v \psi), ~\left(\begin{array}{c}
(v \psi
\end{array}\right)\right.
$$

\square Ratio of the expected number of subgraphs of type Γ to the number in a complete graph, for large Nuis

$$
r(\Gamma, f)=\int_{[0,1]^{\nu(\Gamma)}} \Pi_{(i, j) \in \mathcal{E}(\Gamma)} f\left(x_{i}, x_{j}\right) \Pi_{i \in \mathcal{V}(\Gamma)} d x_{i \psi}
$$

\square Ratio of the expected number of subgraphs of type Γ to the number in a complete graph, for large Nuis

$$
r(\Gamma, f)=\int_{[0,1]^{\nu(\Gamma)}} \Pi_{(i, j) \in \mathcal{E}(\Gamma)} f\left(x_{i}, x_{j}\right) \Pi_{i \in \mathcal{V}(\Gamma)} d x_{i \psi}
$$

- Law of large numbers is valid.

Ratio of the expected number of subgraphs of type Γ to the number in a complete graph, for large Nuis

$$
r(\Gamma, f)=\int_{[0,1]^{\nu(\Gamma)}} \Pi_{(i, j) \in \mathcal{E}(\Gamma)} f\left(x_{i}, x_{j}\right) \Pi_{i \in \mathcal{V}(\Gamma)} d x_{i \psi}
$$

Law of large numbers is valid.

$$
w(\mathcal{G})=\Pi_{(i, j) \in \mathcal{E}(\mathcal{G})} f\left(\frac{i}{N}, \psi \frac{j \psi}{N} \psi \Pi_{(i, j) \notin \mathcal{E}(\mathcal{G})}\left[1-f\left(\frac{i}{N},, \frac{j}{N} \psi \psi\right]\right.\right.
$$

$$
\begin{aligned}
& \sum w(\mathcal{G}) \simeq 1 \\
& \mathcal{G} \in \mathcal{G}_{N, \epsilon, r_{1}, r_{2}, \ldots, r_{k}}
\end{aligned}
$$

The typical probability $w(\mathcal{G})$ under the distribution determined by funas the property $\log w(\mathcal{G})=$

$$
\sum_{(i, j) \in \mathcal{E}(\mathcal{G})} \log f\left(\frac{i}{N}, \psi \psi \psi \psi+\sum_{(i, j) \notin \mathcal{E}(\mathcal{G})} \log \left[1-f\left(\frac{i}{N}, \varphi \frac{j}{N}\right)\right]\right.
$$

The typical probability $w(\mathcal{G})$ under the distribution determined by funas the property $\log w(\mathcal{G})=$

$$
\begin{aligned}
& \sum_{(i, j) \in \mathcal{E}(\mathcal{G})} \log f\left(\frac{i}{N}, \frac{j \psi}{N} \psi+\sum_{(i, j) \notin \mathcal{E}(\mathcal{G})} \log \left[1-f\left(\frac{i}{N}, \frac{j}{N}\right)\right]\right. \\
& -\frac{N^{2}}{2} H(f)
\end{aligned}
$$

- The typical probability $w(\mathcal{G})$ under the distribution determined by funas the property $\log w(\mathcal{G})=$

$$
\begin{aligned}
& \sum_{(i, j) \in \mathcal{E}(\mathcal{G})} \log f\left(\frac{i}{N}, \frac{j \psi}{N} \psi+\sum_{(i, j) \notin \mathcal{E}(\mathcal{G})} \log \left[1-f\left(\frac{i}{N}, \psi \frac{j}{N}\right)\right]\right. \\
& -\frac{N^{2}}{2} H(f)
\end{aligned}
$$

- You must have at least $\exp \left[\frac{N^{2}}{2} H(f)\right]$ graphs.

$$
\begin{array}{cccc}
x_{1,1} & x_{1,2} & \cdots & x_{1, n \psi} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, n \psi} \\
\cdots \psi & \cdots & \cdots & \cdots \\
x_{n, 1} & x_{n, 2} & \cdots & x_{n, n \psi}
\end{array}
$$

$k \Downarrow \notin \mathcal{K}_{n \psi}$

$\square \mathcal{K}=\left\{k \psi k(x, y),[0,1]^{2} \rightarrow[0,1]\right\}$
$\square \mathcal{K}=\left\{k \psi k(x, y),[0,1]^{2} \rightarrow[0,1]\right\}$
$\square \mathcal{K}_{N \psi}$ range of $N \psi \nless$ Numatrices.
$\square \mathcal{K}=\left\{k \psi k(x, y),[0,1]^{2} \rightarrow[0,1]\right\}$
$\square \mathcal{K}_{N \psi}$ range of $N \psi \ltimes$ Numatrices.

- $P\left(k_{N}\right)=\exp \left[-\frac{N^{2}}{2} \log 2\right]$
$\square \mathcal{K}=\left\{k \psi k(x, y),[0,1]^{2} \rightarrow[0,1]\right\}$
$\square \mathcal{K}_{N_{U}}$ range of $N \psi \times N \notin$ matrices.
- $P\left(k_{N}\right)=\exp \left[-\frac{N^{2}}{2} \log 2\right]$
$\square \log P\left[k_{N \psi} \simeq f\right]$

$$
\begin{aligned}
\simeq & -I(f) \\
= & \begin{array}{c}
N^{2} \\
2
\end{array} \int f \log (2 f)+(1-f) \log (2(1-f)) d x d y \psi \\
& =N^{2}\left[H(f)-\frac{1}{2} \log 2\right]
\end{aligned}
$$

- Topology? Weak ?
\square Topology? Weak ?
$\square k \psi \rightarrow r(\Gamma, f)$ is not continuous.
\square Topology? Weak ?
$\square k \psi \rightarrow r(\Gamma, f)$ is not continuous.
- If LDP holds in a topology in which it is continuous, then

$$
\begin{aligned}
\left.J\left(\Gamma_{1}, r_{1} ; \ldots ; \Gamma_{k}, r_{k}\right)\right) & =\frac{1}{2} \log 2-\inf _{\substack{\left.k: r \Gamma_{1}, k\right) \\
1 \leq i \leq k \\
r_{i}}} I(k) \\
& =\sup _{\substack{k: r\left(\Gamma_{i}, k\right) \\
1 \leq i \leq k}} H(k)
\end{aligned}
$$

\square Topology? Weak ?
$\square k \psi \rightarrow r(\Gamma, f)$ is not continuous.
\square If LDP holds in a topology in which it is continuous, then

$$
\begin{aligned}
\left.J\left(\Gamma_{1}, r_{1} ; \ldots ; \Gamma_{k}, r_{k}\right)\right) & =\frac{1}{2} \log 2-\inf _{\substack{\left.k: r \\
1 \leq \Gamma_{i}, k\right) \\
1 \leq i \leq k}} I(k) \\
& =\sup _{\substack{k i r\left(\Gamma_{i}, k\right) \\
1 \leq i \leq k}} H(k)
\end{aligned}
$$

- Strong topology like $L_{p \psi}$ will be OK.
\square Topology? Weak ?
$\square k \psi \rightarrow r(\Gamma, f)$ is not continuous.
\square If LDP holds in a topology in which it is continuous, then

$$
\begin{aligned}
\left.J\left(\Gamma_{1}, r_{1} ; \ldots ; \Gamma_{k}, r_{k}\right)\right) & =\frac{1}{2} \log 2-\inf _{\substack{\left.k: r \mid \Gamma_{i} ; k\right) \\
1 \leq i \leq k}} I(k) \\
& =\sup _{\substack{k i r\left(\Gamma_{i}, k\right) r_{i} \\
1 \leq i \leq k}} H(k)
\end{aligned}
$$

- Strong topology like $L_{p \psi}$ will be OK.
- No chance. Fluctuations.

■ Enter "cut" topology

- Enter "cut" topology
cut metric is $d_{\square}\left(k_{1}, k_{2}\right)=$

$$
\sup _{|\phi|, \mid} \int\left[k_{1}(x, y)-k_{2}(x, y)\right] \phi(x) \quad(y) d x d y \psi
$$

- Enter "cut" topology
cut metric is $d_{\square}\left(k_{1}, k_{2}\right)=$

$$
\begin{gathered}
\sup _{|\phi|, \mid} \int\left[k_{1}(x, y)-k_{2}(x, y)\right] \phi(x) \quad(y) d x d y \psi \\
\sup _{A, B \psi \psi} \int_{A \times B \psi}\left[k_{1}(x, y)-k_{2}(x, y)\right] d x d y \psi
\end{gathered}
$$

\square If $d_{\square}\left(k_{n}, k\right) \rightarrow 0$ and $\sup _{n, x, y \psi}\left|k_{n}(x, y)\right| \leq C$

- If $d_{\square}\left(k_{n}, k\right) \rightarrow 0$ and $\sup _{n, x, y \psi}\left|k_{n}(x, y)\right| \leq C$
$r\left(\Gamma, k_{n}\right) \rightarrow r(\Gamma, k)$.
- If $d_{\square}\left(k_{n}, k\right) \rightarrow 0$ and $\sup _{n, x, y \psi}\left|k_{n}(x, y)\right| \leq C$
$r\left(\Gamma, k_{n}\right) \rightarrow r(\Gamma, k)$.
\square Limits of large graphs.
- If $d_{\square}\left(k_{n}, k\right) \rightarrow 0$ and $\sup _{n, x, y \psi}\left|k_{n}(x, y)\right| \leq C$
$\square r\left(\Gamma, k_{n}\right) \rightarrow r(\Gamma, k)$.
\square Limits of large graphs.
- Count the number of occurrences of Γ in the graph.
- If $d_{\square}\left(k_{n}, k\right) \rightarrow 0$ and $\sup _{n, x, y \psi}\left|k_{n}(x, y)\right| \leq C$
$\square r\left(\Gamma, k_{n}\right) \rightarrow r(\Gamma, k)$.
\square Limits of large graphs.
\square Count the number of occurrences of Γ in the graph.
\square Divide by the number in a complete graph.

Assume the limit (Γ) of the ratio exists for every Γ.
\square Assume the limit (Γ) of the ratio exists for every Γ. \square What are possible limits? Graphons.
\square Assume the limit (Γ) of the ratio exists for every Γ.

- What are possible limits? Graphons.
- Representation.
\square Assume the limit (Γ) of the ratio exists for every Γ.
- What are possible limits? Graphons.
- Representation.
- There is s symmetric function $f(x, y)$ on $[0,1] \times[0,1]$ such that
\square Assume the limit (Γ) of the ratio exists for every Γ.
- What are possible limits? Graphons.
- Representation.
- There is s symmetric function $f(x, y)$ on $[0,1] \times[0,1]$ such that
- For any graph Γ with vertices $\mathcal{V}(\Gamma)$ and edges $\mathcal{E}(\Gamma)$

$$
r(\Gamma, f)=\int_{[0,1]^{\nu(\Gamma)}} \Pi_{(i, j) \in \mathcal{E}(\Gamma)} f\left(x_{i}, x_{j}\right) \Pi_{i \in \mathcal{V}(\Gamma)} d x_{i \psi}
$$

$\square r(\Gamma, f)=r(\Gamma, g)$ for all Γ if and only if $f(x, y)=g(\sigma x, \sigma y)$ for some $\sigma \Downarrow \in \mathcal{H} . \psi$
$\square r(\Gamma, f)=r(\Gamma, g)$ for all Γ if and only if $f(x, y)=g(\sigma x, \sigma y)$ for some $\sigma \Downarrow \notin \mathcal{H} . \psi$

- Cut topology is the smallest topology on $\mathcal{K} / \mathcal{H}$ that makes $f \psi \rightarrow r(\Gamma, f)$ continuous for every Γ.
$\square r(\Gamma, f)=r(\Gamma, g)$ for all Γ if and only if $f(x, y)=g(\sigma x, \sigma y)$ for some $\sigma \Downarrow \not \mathcal{H} . \psi$
- Cut topology is the smallest topology on $\mathcal{K} / \mathcal{H}$ that makes $f \psi \rightarrow r(\Gamma, f)$ continuous for every Γ.
- This topology works for LLN. $2^{n 凶} \times 2^{n \psi} \ll \mathbb{2}^{n^{2}}$
\square Upper Bound needs compactness, or exponential tightness.
- Upper Bound needs compactness, or exponential tightness.
$\square \mathcal{K}$ is not compact under cut topology.
- Upper Bound needs compactness, or exponential tightness.
$\square \mathcal{K}$ is not compact under cut topology.
\square But $\mathcal{K} / \mathcal{H}$ is by a theorem of Lovász-Szegedy
- Upper Bound needs compactness, or exponential tightness.
$\square \mathcal{K}$ is not compact under cut topology.
- But $\mathcal{K} / \mathcal{H}$ is by a theorem of Lovász-Szegedy
\square It may be possible to prove the large deviation estimate in the topology induced by "cut" topology on $\mathcal{K} / \mathcal{H}$
- Need to estimate the probability of a neighborhood of the orbit.
- Need to estimate the probability of a neighborhood of the orbit.
- Szemerédi's regularity lemma
- Need to estimate the probability of a neighborhood of the orbit.
- Szemerédi's regularity lemma
- Replaces the \mathcal{H} orbit by a $\pi_{n u}$ permutation orbit.
- Need to estimate the probability of a neighborhood of the orbit.
- Szemerédi's regularity lemma
\square Replaces the \mathcal{H} orbit by a π_{n} permutation orbit.
$\square \log n!=o\left(n^{2}\right)$

Example. Chiranjib Mukherjee

- Brownian Motion

Example. Chiranjib Mukherjee

- Brownian Motion
$\square L_{t \psi}=\frac{1}{T \psi} \int_{0}^{T} \delta_{x(s)} d s \psi$

Example. Chiranjib Mukherjee

- Brownian Motion
- $L_{t \psi}=\frac{1}{T} \psi \int_{0}^{T} \delta_{x(s)} d s \psi$

$$
\begin{aligned}
\lambda(V) & =\lim _{T \rightarrow \infty} \frac{1}{T \psi} \log E\left[\exp \left[\int_{0}^{T} V(x(s)) d s\right]\right] \\
& =\sup _{|f|_{2}=1}\left[\int V(x)[f(x)]^{2} d x-\frac{1}{2} \int|\nabla f|^{2} d x \psi\right. \\
& =\sup _{\substack{f>0 \\
|f|_{1}}}\left[\int V(x) f(x) d x-\frac{1}{8} \int \frac{|\nabla f|^{2}}{f} d x \psi\right.
\end{aligned}
$$

$$
P\left[L_{T \psi} \simeq f\right]=\exp [-T I(f)+o(T)]
$$

$$
\begin{aligned}
P\left[L_{T \psi} \simeq f\right] & =\exp [-T I(f)+o(T)] \\
I(f) & =\frac{1}{8} \int|\nabla f|^{2} d x \psi
\end{aligned}
$$

$$
E \psi\left[\exp \left[\frac{1}{T} \psi \int_{0}^{T \psi} \int_{0}^{T \psi} V((s)-(t)) d s d t\right]\right]
$$

$$
E \psi\left[\exp \left[\frac{1}{T} \psi \int_{0}^{T \psi} \int_{0}^{T \psi} V((s)-(t)) d s d t\right]\right]
$$

$\square V(x) \rightarrow 0$ as $|x| \rightarrow \infty$

$$
E \psi\left[\exp \left[\frac{1}{T} \psi \int_{0}^{T \psi} \int_{0}^{T \psi} V((s)-(t)) d s d t\right]\right]
$$

$\square V(x) \rightarrow 0$ as $|x| \rightarrow \infty$
$\square \exp [c T \psi+o(T)] ?$.

$$
\begin{aligned}
& \left.\quad E \psi \exp \left[\frac{1}{T} \psi \int_{0}^{T \psi} \int_{0}^{T \psi} V((s)-(t)) d s d t\right]\right] \\
& V(x) \rightarrow 0 \text { as }|x| \rightarrow \infty \\
& \exp [c T \psi \psi+o(T)] ? . \\
& c=\sup _{\substack{f \geq 0 \\
|f|_{1}}}\left[\int V(x-y) f(x) f(y) d x d y-\frac{1}{8} \int \frac{|\nabla f|^{2}}{f} d x \psi\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad E \psi \exp \left[\frac{1}{T} \psi \int_{0}^{T \psi} \int_{0}^{T \psi} V((s)-(t)) d s d t\right]\right] \\
& V(x) \rightarrow 0 \text { as }|x| \rightarrow \infty \\
& \exp [c T \psi+o(T)] ? \\
& c=\sup _{\substack{f \geq 0 \\
|f|_{1}}}\left[\int V(x-y) f(x) f(y) d x d y-\frac{1}{8} \int|\nabla f|^{2} d x \psi\right.
\end{aligned}
$$

Compactification of $\mathcal{M}\left(\mathcal{R}^{d}\right) / \mathcal{R}^{d \psi}$

- If we only need to estimate

$$
E\left[\left[\exp \left[\int_{0}^{T \psi} V((s)) d s\right]\right]\right.
$$

One point comactification of $\mathcal{R}^{d \gamma}$ is enough.

- If we only need to estimate

$$
E \psi\left[\exp \left[\int_{0}^{T \psi} V((s)) d s\right]\right]
$$

One point comactification of $\mathcal{R}^{d \gamma}$ is enough.
$\square\left\{f \psi f \psi 0, \int f(x) d x \psi \leq 1\right\}$.

- If we only need to estimate

$$
E \psi\left[\exp \left[\int_{0}^{T \psi} V((s)) d s\right]\right]
$$

One point comactification of $\mathcal{R}^{d \gamma}$ is enough.
$\square\left\{f \psi f \geqslant 0, \int f(x) d x \psi \leq 1\right\}$.
\square Vague topology is OK.

Translation invariant comapactification?

\square Translation invariant comapactification?
$\square\{\tilde{\mu}\}$
\square Translation invariant comapactification?
$\square\{\tilde{\mu}\}$
$\square \sum \mu \psi\left(\mathcal{R}^{d}\right) \leq 1, d \mu \psi=f \psi d x \psi$
\square Translation invariant comapactification?
$\square\{\tilde{\mu}\}$
$\square \sum \mu \psi\left(\mathcal{R}^{d}\right) \leq 1, d \mu \psi=f \psi d x \psi$
$\square I(\{f \psi\})=\sum_{i \psi \overline{\overline{8}}} \int{ }_{f_{\alpha}}^{\left|\nabla f_{\alpha}\right|^{2}} d x \psi=\sum I(f \psi)$

Translation invariant comapactification?

$$
\begin{aligned}
& \{\tilde{\mu}\} \\
& \sum \mu \psi\left(\mathcal{R}^{d}\right) \leq 1, d \mu \psi=f \psi \psi d x \psi \\
& I\left(\{f \psi \psi)=\sum_{i u \overline{8}} \frac{1}{} \int \frac{\left|\nabla f_{\alpha_{0}}\right|^{2}}{f_{\alpha}} d x \psi \psi \sum(f \psi)\right. \\
& c \psi \neq \sup _{\left\{f_{\alpha}\right\}}\left[\sum \int V(x)(f \psi * \bar{f} \psi)(x) d x-\sum I(f \psi)\right]
\end{aligned}
$$

\square Translation invariant comapactification?

- $\{\tilde{\mu}\}$
$\square \sum \mu \psi\left(\mathcal{R}^{d}\right) \leq 1, d \mu \psi=f \psi d x \psi$
$\square I(\{f \psi\})=\sum_{i \psi \overline{\overline{8}}} \int_{f_{\alpha}}^{\left|\nabla f_{\alpha}\right|^{2}} d x \psi=\sum I(f \psi)$
$c \psi=\sup _{\left\{f_{\alpha}\right\}}\left[\sum \int V(x)(f \psi * \bar{f} \psi)(x) d x-\sum I(f \psi)\right]$
$c \psi=\sup _{f \psi}\left[\int V(x)(f \downarrow * \bar{f})(x) d x-I(f)\right]$
- Needs Compactness
- Needs Compactness
$\square D\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}\right)$
- Needs Compactness
- $D\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}\right)$
- $\left.\sum \frac{1}{2^{j}} \right\rvert\, \int F_{j}\left(x_{1}, \ldots, x_{k_{j}}\right)\left[\Pi_{r=1}^{k_{j}} \mu_{1}\left(d x_{r}\right)-\Pi_{r=1}^{k_{j}} \mu_{2}\left(d x_{r \vartheta}\right) \mid\right.$
- Needs Compactness
- $D\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}\right)$
- $\left.\sum \frac{1}{2^{j}} \right\rvert\, \int F_{j}\left(x_{1}, \ldots, x_{k_{j}}\right)\left[\Pi_{r=1}^{k_{j}} \mu_{1}\left(d x_{r}\right)-\Pi_{r=1}^{k_{j}} \mu_{2}\left(d x_{r}\right) \mid\right.$
$\square\left\{F_{j}\right\}$ are translation invariant
- Needs Compactness
$\square D\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}\right)$
$\left.\square \sum \frac{1}{2^{j}} \right\rvert\, \int F_{j}\left(x_{1}, \ldots, x_{k_{j}}\right)\left[\Pi_{r=1}^{k_{j}} \mu_{1}\left(d x_{r}\right)-\Pi_{r=1}^{k_{j}} \mu_{2}\left(d x_{r}\right) \mid\right.$
$\square\left\{F_{j}\right\}$ are translation invariant
$\square F\left(x_{1}+x, \ldots, x_{k \psi}+x\right)=F\left(x_{1}, \ldots, x_{k}\right)$
- Needs Compactness
$\square D\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}\right)$
- $\left.\sum \frac{1}{2^{j}} \right\rvert\, \int F_{j}\left(x_{1}, \ldots, x_{k_{j}}\right)\left[\Pi_{r=1}^{k_{j}} \mu_{1}\left(d x_{r}\right)-\Pi_{r=1}^{k_{j}} \mu_{2}\left(d x_{r}\right) \mid\right.$
$\square\left\{F_{j}\right\}$ are translation invariant
$\square F\left(x_{1}+x, \ldots, x_{k \psi}+x\right)=F\left(x_{1}, \ldots, x_{k}\right)$
\square Complete with this metric.
- Needs Compactness
$\square D\left(\widetilde{\mu}_{1}, \widetilde{\mu}_{2}\right)$
- $\left.\sum \frac{1}{2^{j}} \right\rvert\, \int F_{j}\left(x_{1}, \ldots, x_{k_{j}}\right)\left[\Pi_{r=1}^{k_{j}} \mu_{1}\left(d x_{r}\right)-\Pi_{r=1}^{k_{j}} \mu_{2}\left(d x_{r}\right) \mid\right.$
$\square\left\{F_{j}\right\}$ are translation invariant
$\square F\left(x_{1}+x, \ldots, x_{k \psi}+x\right)=F\left(x_{1}, \ldots, x_{k}\right)$
\square Complete with this metric.
Completion is compact.
\square What is in the completion?
\square What is in the completion?
- $\{\widetilde{\mu}\}$

What is in the completion?

$\{\widetilde{\mu}\}$

$$
\begin{gathered}
D(\{\widetilde{\mu}\},\{\widetilde{\mu}\})=\sum \frac{1}{2^{j} \psi} \int F_{j}\left(x_{1}, \ldots, x_{k_{j}}\right) \\
{\left[\sum \Pi \mu \psi\left(d x_{r}\right)-\sum \Pi \mu \psi\left(d x_{r}\right) \mid\right.}
\end{gathered}
$$

What is in the completion?
$\{\widetilde{\mu}\}$

$$
\begin{gathered}
D(\{\widetilde{\mu}\},\{\widetilde{\mu}\})=\sum \frac{1}{2^{j} \psi} \int F_{j}\left(x_{1}, \ldots, x_{k_{j}}\right) \\
{\left[\sum \Pi \mu \psi\left(d x_{r}\right)-\sum \Pi \mu \psi\left(d x_{r}\right) \mid\right.}
\end{gathered}
$$

Need to show that if $D(\{\widetilde{\mu}\},\{\widetilde{\mu}\})=0$ then

What is in the completion?
$\{\widetilde{\mu}\}$

$$
\begin{gathered}
D(\{\widetilde{\mu}\},\{\widetilde{\mu}\})=\sum \frac{1}{2^{j} \psi} \int F_{j}\left(x_{1}, \ldots, x_{k_{j}}\right) \\
{\left[\sum \Pi \mu \psi\left(d x_{r}\right)-\sum \Pi \mu \psi\left(d x_{r}\right) \mid\right.}
\end{gathered}
$$

Need to show that if $D(\{\widetilde{\mu}\},\{\widetilde{\mu}\})=0$ then
$\{\widetilde{\mu}\}=\{\widetilde{\mu}\}$

- Identification of $\{\widetilde{\mu}\}$ from

- Identification of $\{\widetilde{\mu}\}$ from
$\square \sum \int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)$

- Identification of $\{\widetilde{\mu}\}$ from

$\square \sum \int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)$
$-\sum\left[\int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)\right]^{m}$

- Identification of $\{\widetilde{\mu}\}$ from
$\square \sum F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)$
$-\sum\left[\int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)\right]^{m}$
- $\int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)$
- Identification of $\{\widetilde{\mu}\}$ from
$\square \sum \int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)$
- $\sum\left[\int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)\right]^{m}$
- $\int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)$
$\square F \psi=\exp \left[\sqrt{ }-1 \sum t_{i} x_{i}\right]$ provided $\sum_{i \psi} t_{i \psi}=0$
- Identification of $\{\widetilde{\mu}\}$ from
$\square \sum \int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)$
- $\sum\left[\int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)\right]^{m}$
- $\int F\left(x_{1}, \ldots, x_{k}\right) \Pi \mu \psi\left(d x_{r}\right)$
$\square F \psi=\exp \left[\sqrt{ }-1 \sum t_{i} x_{i}\right]$ provided $\sum_{i} t_{i \psi}=0$
$\square \Pi \phi\left(t_{i}\right)$ provided $\sum_{i \psi} \hbar_{i w}=0$
$-|\phi(t)|^{2}$
- | $\left.\phi(t)\right|^{2}$
- $\phi(t)=|\phi(t)| \chi(t)$
- | $\left.\phi(t)\right|^{2}$
- $\phi(t)=|\phi(t)| \chi(t)$
$\square \Pi_{i} \chi\left(t_{i}\right)=1$ if $\sum_{i \psi} t_{i w}=0$
- | $\left.\phi(t)\right|^{2}$
- $\phi(t)=|\phi(t)| \chi(t)$
$\square \Pi_{i} \chi\left(t_{i}\right)=1$ if $\sum_{i \chi} t_{i w}=0$
$\square \chi(t+s)=\chi(t) \chi(s), \chi(n t)=[\chi(t)]^{m \psi}$
- | $\left.\phi(t)\right|^{2}$
- $\phi(t)=|\phi(t)| \chi(t)$
$\square \Pi_{i} \chi\left(t_{i}\right)=1$ if $\sum_{i \chi} t_{i w}=0$
$\square \chi(t+s)=\chi(t) \chi(s), \chi(n t)=[\chi(t)]^{n \psi}$
$\square \chi(t)=e e^{i \nmid c}$
- | $\left.\phi(t)\right|^{2}$
- $\phi(t)=|\phi(t)| \chi(t)$
$\square \Pi_{i} \chi\left(t_{i}\right)=1$ if $\sum_{i \psi} t_{i w}=0$
$\square \chi(t+s)=\chi(t) \chi(s), \chi(n t)=[\chi(t)]^{n \psi}$
$\square \chi(t)=e e^{\text {it }}{ }^{\alpha}$
$\square a$ is not determined.

THANK YOU

